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ABSTRACT
Distributed query processing, when blank nodes might occur in

sources and only the signature of sources are known, may in the

worst case require that all possible query partitions be evaluated

in order to ensure soundness and completeness of answers. The

work presented in this paper attempts to push the boundary as

to what query sizes and structures lies within practical feasibility.

The presented approach utilizes semantic information obtained

by probing sources for occurrences of blank nodes, interleaved

in a recursive algorithm for calculating restricted growth strings,

in order to detect and abort unfruitful branches in the partition

generating process. The approach is evaluated against a well-known

SPARQL benchmark, modified for the distributed case, and tentative

conclusions regarding the effectiveness are drawn.
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1 INTRODUCTION
Distributed SPARQL processing aka. SPARQL federation is all but

implicit in the Semantic Web vision. The Semantic Web is designed

to promote and enable data integration from all over the inter-

net, depending on opportunity and relevance for a given task, and

distributed SPARQL processing is one way of automating it.

The term "distributed SPARQL processing" may tentatively be

understood as the problem of answering a query by decomposing

and distributing it to different contributing sources, with the goal

of combining the partial answers into a global answer that is se-

mantically equivalent to what would be obtained were the data

held in a single source.

Themost general problem of federation is the case where nothing

about the structure and content of the data in the contributing
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sources is assumed to be known. In particular, one cannot rule

out the presence of blank nodes in the data. The literature has

not devoted much attention to the impact of blank nodes on the

federation process. In most cases blank nodes are ruled out by

stipulation. Indeed, the only study we know of that attempts to

confront the problem is the prequel [17] to this paper, where it

is shown that blank nodes change the federation problem quite

profoundly, and have major ramifications for sound and complete

query answering strategies.

In a nutshell, the situation is this: in conformity to the SPARQL

specification, blank node identifiers are only in scope in the ex-

ecution context that produced them. That is, they cannot be re-

identified between different runs of different or even identical

queries. So if the same blank node is bound to a variable in two

different runs of two possibly different queries, then irrespective of

the form of those queries, there is no way to tell that the solution

bindings for that variable were generated by the very same node.

In distributed terms, this creates a tension between picking up on

cross-source joins, on the one hand, and on local joins involving

blank nodes on the other. For example, if one partitions a query into,

say, singleton triple patterns, then local joins involving blank nodes

will be missed. If, on the other hand, one sends too large chunks of a

query to a single source then remote joins will be missed. The only

way to solve this in the general case where no knowledge about the

sources is assumed is to "brute-force" the possibilities, splitting a

query in all possible ways and trying each of these partitions. For all

but trivially small SPARQL queries, this turns out not to be feasible.

To put it into perspective, a query consisting of 10 patterns will,

in the absence of heuristic countermeasures, require that 115 795

distinct partitions be evaluated. This is of course, due to the sheer

combinatorial complexity of calculating partitions. This combina-

torial problem and the ways of dealing with it is the mathematical

backdrop against which zero-knowledge SPARQL federation must

be studied.

It is the purpose of the present paper to make a first stab at

this. We shall try to get the combinatorial explosion under control

using heuristics to prune the space of partitions a federator needs

to compute. There’s nothing to be done about the worst case of

course, so we’ll settle for progress on realistic and useful examples

of SPARQL queries. The discussion applies only to conjunctive

SPARQL queries, aka. basic graph patterns (BGPs), which may

be considered a natural theoretical baseline. Given all that has

been said so far, it should come as no surprise that we explicitly

allow blank nodes to occur in the data. We refer to this problem of

federating BGPs over data that may contain blank nodes as general
BGP federation.
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Given the results from [17], it isn’t possible to make any progress

with this unless one leverages some form of knowledge about

the data sources. Yet, there are tangible advantages to the zero-

knowledge approach to federation that it’d be desirable to retain.

For one, the more unassuming a theory is the more generally appli-

cable it is. Assuming no knowledge makes the theory applicable to

all other special cases, but as it looks, impracticable. The only way

out of this bind is to acquire knowledge as the federation process

unfolds. The idea explored here is that this can be done by evaluat-

ing SPARQL probes at the fringe of a search for restricted growth

strings (RGSs).

There is a one-to-one correspondence between restricted growth

strings over of length n and the set of partitions of a set of the

same cardinality. A number of well studied algorithms for listing

RG strings exist already, see [12, 13]. The present paper aims to

exploit one such algorithm which, speaking in terms of partitions

rather than strings, has the property that combinations of subsets

are built up in a recursive exploration of different ways to obtain

a partition. Given a negative answer to a probe, the recursion can

be terminated, in effect ignoring the entire set of partitions in the

leaves under that point . The probes in question take the form of

SPARQL ASK queries designed to gather information about the

position of blank nodes in the data, cf. Sec. 6.

To this main theme we add two subordinate ones concerned with

preprocessing the input before it goes in to the RGS computation.

One is based on the concept of an exclusive group from [15], that

is, on query patterns that are answerable by at most a single con-

tributing source. Exclusive groups can be treated as atoms in the

combinatorics of calculating partitions in the sense that it is never,

from a semantical point of view, necessary to split them up. We

exploit this notion by treating exclusive groups as single elements,

thereby simplifying the intial combinatorial problem. The second

preprocessing procedure considers the effect of ordering the ele-

ments of the seed set. Ordering can have a measurable effect insofar

as it can force probes to fail early. It cannot reduce the number of

computed partitions, but it reduces the number of recursive calls

that has to be made to compute them.

An empirical evaluation is included towards the end of the paper.

It suggests that the effect of these countermeasures goes some

way towards bringing general BGP federation within the limits of

practicability for medium-sized SPARQL queries. The experiments

are performed against a standardized SPARQL benchmark, adjusted

for the distributed case of study, with query patterns that capture

fairly typical use cases.

2 A DESCRIPTION OF THE PROBLEM
2.1 Nomenclature

RDF graphs. Let U ,B and L denote pairwise disjoint infinite sets

of IRIs, blank nodes, and literals respectively. In conformity with

the nomenclature of [3], IL abbreviates I ∪ L and T abbreviates

I ∪ B ∪ L. T is the set of RDF terms, elements of which will be

denoted individually by ui ,vj . RDF triples are defined as usual as

elements of (I ∪ B) × I × (I ∪ B ∪ L), and are symbolized ai . where
the ‘a’ is meant to stand for ‘assertion’. An RDF graph is a finite

set of RDF triples. RDF graphs are denoted by G and H , and sets

of RDF graphs by G . RDF graphs may also be referred to as RDF

sources.

SPARQL queries. Turning now to SPARQL queries, the analysis in

the present paper will be limited to the select-project-join fragment,

thus essentially to basic graph patterns (henceforth BGPs). Blurring

the line between syntax and semantics, BGPs will be treated as sets

of triple patterns. More specifically, where V is an infinite set of

variables xi , elements ti , tj ∈ (IL∪V ) × (I ∪V ) × (IL∪V ) are triple
patterns1 and {ti , tj } is a BGP.

Query evaluation. The evaluation of a BGP P over an RDF graph

G will be denoted by JPKcG , and elements of JPKcG , called solutions, by
µc . Sets of solutions will be denoted by Ω. There is a minor deviation

here from standard practice, namely the parameter c which names

the execution context in which a query is run. It is essentially a

way of standardizing apart names of blank nodes in answer sets—a
necessary device for keeping distributed query processing sound.

Formal details can be found in [17]. Explicit reference to contexts

may be omitted when it is not important.

For a set of graphs G , the evaluation JPKG of P is understood

to be the distributed evaluation of P over G , that is, it refers to the

outcome of the federation process according to the semantics given

in [17]. In contrast, letm(G ) denote the merge of the graphs in G ,

that is,m(G ) is the single graph that results from taking the union

of all elements of G after standardizing apart blank nodes from

different graphs. Then JPKm (G ) is just the evaluation of P over the

single sourcem(G ). The two are emphatically not the same. Indeed,

the semantics of federated zero-knowledge query processing is

precisely the conditions under which JPKG = JPKm (G ) . The left-to-

right inclusion says that the federation process is sound, and the

converse inclusion says that it is complete.

2.2 Motivating example
It seems natural to expect, by default at least, that a distributed

query processor should aim to return all answers as warranted by

the union of the sources. To illustrate what we mean with this,

consider the two RDF graphs in Figs. 1 and 2 respectively. The

abovementioned graphs encode information regarding members of

the European Parliament (MEP), as found in the LinkedEP dataset

produced by the Talk of Europe project [18], a dataset covering

plenary debates held as well as biographical information regard-

ing members of parliament. More specifically, source A encodes

information regarding the MEP Eva Joly and her political functions,

while source B encodes information regarding MEP Carl Schlyter.

From the data, we see that they represent different national parties

but belong to the same EU political party (Europarty). However,

the information in source A alone is not enough to conclude that

Eva Joly is associated with a Europarty, as EFA is not typed as such.

This missing piece of information is, however, present in source B.

Thus, when the sources are merged, as shown in Fig. 3, the political

institutions are all appropriately typed. Hence, posing the query in

Fig. 4, asking for the name of the MEPs in the EU parliament that

are politically affiliated with a Europarty (not all MEPs are), as well

as the party name, produces the answers in Fig. 6.

1
Literal subjects are not allowed to occur in RDF triples, yet the SPARQL 1.1 specifica-

tion allows them in triple patterns.
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Figure 1: RDF source A
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Figure 2: RDF source B
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Figure 3: The union of sources A and Bmodulo renaming of
blank nodes.

Now, if we only evaluate the query in Fig. 4 against each source

separately, for so to take the union of the results, we get an in-

complete set of answers as shown in Fig. 5. In other words, it is

clear that the sum of the whole is more than the sum of its sepa-

rate parts. That is, the total amount of information contained by

SELECT ? person ? pa r t y WHERE {

? person a lpv :MEP .

? person lpv : p o l i t i c a l F n ?x .

? x lpv : i n s t i t u t i o n ? pa r t y .

? p a r t y r d f : type lpv : EUParty . }

Figure 4: Get MEP and EU party

the two sources combined, resides not only in what each of them

can contribute separately, but in also in the combination or join of

elements across sources. In other words, the query cannot simply

be executed as a whole against each source—that is too coarse. It

must rather be split up into parts tailored to capture the cross-site

joins.

Unfortunately, there is a complicating factor that blocks any

straightforward realization of this idea, namely the presence of

blank nodes in join positions. More specifically, sources A and B

utilize blank nodes to represent complex attributes in the form of

statements about statements, as recommended by the SemanticWeb

Best Practices and Deployment Working Group. In this case, that

"X had a political affiliation to institution Y between dates A and B"

is codified using blank nodes. In the distributed case, such a join,

if it is not handled with special care, will quickly become a drain

through which information will leak. As described in detail in [17],

this is due to the fact that anaphoric reference is lost whenever the

same blank node is processed in two separate execution contexts.

According to the SPARQL 1.1 specification, every distinct query

constitutes a distinct and sealed scope for blank node identifiers,

which means that a blank node from one execution context cannot

be referenced in another. In other words, blank nodes are similar to

existential variables in the sense that they are anaphors within the

same quantificational context only. Now, a blank node that receives

different names in different query execution contexts obviously

cannot be used for cross-site joins, so there it is.

It is worth emphasizing that none of the more straightforward

and better known query-decomposition strategies from the liter-

ature, such as the even decomposition, so called in [16] as imple-

mented in DARQ [10], and the standard decomposition as imple-

mented in FedX [15] solve this problem.

Exemplifying, the even decomposition will evaluate each triple

pattern (from the global query, let’s call it) against every source

that may contain an answer for it (meaning that the RDF prop-

erty from the triple pattern in question occurs in that source). For

instance, the even decomposition will evaluate both of the triple pat-

terns ?person lpv:politicalFn ?x and ?x lpv:institution
?party from the query in Fig. 4 separately against each of A and B.

Collecting the solutions in separate tables, we have the answer sets

in Figs. 7 and 8, where the identifiers for blank nodes have been

given distinct subscripts c and d to signify that they are not to be

treated as the same names. Now, as these tables do not join, the

even distribution produces no answer to the example query, not

even the ones that derive from the same source. This time it comes

down to the fact that query is split too finely.

Taking stock, these examples can be taken to show the follow-

ing: If answering a query involves joins on blank nodes, then the

granularity of the decomposition of that query matters a great deal.

If the query is split too finely, then answers from a single source
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?person ?party
:CarlSchlyter :EFA

Figure 5: Union of answers over A and B

?person ?party
:EvaJoly :EFA

:CarlSchlyter :EFA

Figure 6: Answer over the merge of A and B

?person ?x
:EvaJoly _:b1c
:EvaJoly _:b2c

Figure 7: ?person lpv:politicalFn ?x over A

?x ?party
_:b1d :EE_France
_:b2d :EFA

Figure 8: ?x lpv:institution ?party over A.

may be lost due to the loss of join information linking the partial

answers. If on the other hand the query is split too coarsely, then

cross-site joins may be lost. From a semantical point of view, dis-

tributed query answering is essentially about balancing these two

opposing forces.

3 THE EXISTENCE OF DECOMPOSITIONS
The partition immediately below gives a decomposition of the query

in Fig. 4 that produces a complete answer.

P1 := {?person lpv:politicalFunction ?x.,

?x lpv:institution ?party.}

P2 := {?person a lpv:MEP.}

P3 := {?party a lpv:EUParty.}

The crucial thing about this decomposition is first, that it groups

together those triple patterns that match a join on a blank node,

thus ensuring that the join arguments are kept within one and

the same execution context so as not to lose anaphoric reference

(P1). Secondly, it is also of crucial importance that all other triple

patterns are shipped as singletons, or else cross-site joins would be

lost (P2 and P3).
As it happens, there is only one solution µ to the query in Fig. 4

over the sources in Figs. 1 and 2. The partition P1-P3 corresponds to
this solution—the reader may verify this for himself—in the sense

that the join of the respective unions of evaluating each subquery

over the sources that can answer yields the set of bindings {µ}.
In the general case that a query has more than one solution—

‘having a solution’ should here be understood as having an answer

in the merge of the contributing sources—correspond to the same

partition. Indeed, it is not even entirely obvious that there is a

partition for every solution. The demonstration that there is, relies

on the concepts of a b-component and a b-connected set:

Definition 3.1 (b-connectedness). LetG, {a} be RDF graphs, then
(1) {a} is b-connected
(2) G ∪ {a} is b-connected ifG is b-connected andG and a share

a blank node.

A b-component, on the other hand, is a subquery that matches a

maximally b-connected subgraph modulo some solution µ:

Definition 3.2 (b-component). Let µc ∈ JPKcm (G )
and suppose

Pi ⊆ P . Then Pi is a b-component of P relative to µc iff µc (Pi ) is a
maximal b-connected subset of µc (P ).

Note that b-connected sets are RDF graphs, whereas b-components

are SPARQL query patterns. Note also that subquery Pi is a b-
component relative to a particular solution µ. We shall say that µ
induces the the b-component Pi . Now, let µc be a solution to P in

a graph G and let f (µc , P ) denote the set of b-components of P
modulo µc . Then f is a function and f (µc , P ) partitions P . Indeed
f (µc , P ) selects the partition that corresponds to µc .

Theorem 3.3. Let G := {Gi }i ∈I be a set of sources of RDF graphs
and let µc ∈ JPKcm (G )

. Put f (µc , P ) := P1, . . . , Pk . Then there is a set

{m, . . . ,n} ⊆ I such that there is a µ ′ ∈ JP1K
cm
Gm
▷◁ . . . ▷◁ JPk KcnGn

, for
any distinct set of execution contexts cm , . . . , cn , and µc (P ) ⊨⊨ µ ′(P ).

Theorem 3.3 shows that every solution to a query P in the merge

of a set of sources G is RDF equivalent (symbolized by ⊨⊨) to a

solution contained in the join of the separate evaluation of the cells

of some partition of P. These two solutions are alphabetic variants

of each other obtained by substituting names of blank nodes for

names of blank nodes. In other words, there is always a solution

to be had by federation if there is a solution in the merge of the

sources.

Yet, Theorem 3.3 is just an existence theorem. It does not pro-

vide a recipe for actually finding the partition corresponding to a

solution. Indeed, the theorem presupposes that we already have

the solution and works backwards from there to identify the corre-

sponding partition. Moreover, although every solution induces a

partition, the converse is not true. For any given set of sources and a

query, there will usually be plenty of partitions with cells that have

no answer in any of the sources. The simplest example is a pair of

non-overlapping RDF graphs, a query that requests information

from both, and the partition that contains only the whole query.

These partitions, and all the cells in it, are redundant from the point

of view of the evaluation process. They do not threaten soundness,

they just don’t return solutions.

Taking stock, one might say that zero-knowledge federation

(of general BGPs) is the task of searching the space of all possible

partitions of a query until all the elements that produce solutions

have been found. Since the redundant partitions do not jeopardize

soundness, the brute force approach that computes all partitions, is
one way of doing it. But clearly, it is not a feasible one in practice,

since a set of n + 1 elements has Bn+1 (the n+1-th Bell number) par-

titions where the Bn+1 is given by a recurrence relation involving
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binomial coefficients:

Bn+1 =
n∑

k=1

(
n

k

)
Bk

So, for example a query with 10 triple patterns has 115975 partitions.

4 COMPUTING PARTITIONS
As noted earlier, a considerable amount of literature has been pro-

duced regarding efficiently generating all set partitions. Here, the

work done on restricted growth strings (RGS) [11, 13] seems to

currently yield the best results.

The restricted growth strings of length n are the strings repre-

sented as a sequence of non-negative integers s0, . . . , sn−1 s.t.

s0 = 0

si ≤ 1 +max {s0, . . . , si−1}

The relevance of these strings wrt. set partitions, as described

in [11] and [12], is that there is a bijection between the partitions

of sets of the form {1, . . . ,n}, and the restricted growth strings of

length n. Specifically, if we order the blocks of a partition according

to the least element in each block, label the blocks incrementally

starting from 0, and for 1 ≤ i < n assign si to the label of the block

that i occurs in, we get the associated RGS. E.g., the corresponding

RGS string representation of the partition {{1, 4}, {2}, {3}} is 0120.

Now, in order to utilize this for our purpose, we must be able

to associate a BGP P of size n with a string representation of the

form {1, . . . ,n}. We can get this by simply assigning any linear

ordering of the triple patterns that constitute P for so to associate

this sequence position-wise with RGS strings. That is, assuming

t0, . . . , tn is a sequence of triple patterns, and s0, . . . , sn is an RGS

string of length n, then grouping ti into sets based on the value of

si yields a partition of P . E.g., the triple pattern sequence t0, t1, t2, t3
and the RGS string 0120 defines the partition {{t0, t3}, {t1}, {t2}}.

Although there are many efficient RGS algorithms available, we

are after one that has the feature that it recursively expands blocks.

This yields a controlled behavior of fringe expansion that allows

pruning at intermediate nodes in the tree. Generating the sequences

of RGS recursively, as per Algorithm 4.22 in [11], yields the trace

tree (left to right) shown in Fig. 9.

0***

00**

000*

0000 0001

001*

0010 0011 0012

01**

010*

0100 0101 0102

011*

0110 0111 0112

012*

0120 0121 0122 0123

Figure 9: Pruning RGS computation tree

As hinted to earlier, there is an important pruning opportunity

shown in this computation tree. For if we can deem that an inter-

mediate node in the computation tree yields a block that a) will

not contribute to the final answers, and b) holds for any superset

block as well, then we can prune away the branches from that node.

Exemplified, say the intermediate allocation ⟨00∗∗⟩ is such that the

position-wise translation wrt. the global query P , denoted P[00 ∗ ∗],
yields P[00 ∗ ∗] = {{t0, t1}}, where {t0, t1} is a BGP satisfying the

abovementioned condition. By pruning at the identified node in

tree, we can then prevent the partitions encoded in the leafs of this

branch from being generated, as shown by the red coloring in the

figure. The following section describes a probe that identifies such

an opportunity.

5 PROBING THE FRINGE
As we have characterized it, general BGP federation is at bottom

the combinatorial problem of computing those partitions of a query

that correspond to solution mappings.

From Theorem 3.3 we know that these partitions have the form

f (µ, P ) where P is the global query pattern and µ is a solution. It

follows by contraposition that if a partition is not of this form then

it is redundant for query answering.

Further, recall that all elements of f (µ, P ) are b-components wrt.

µ. Hence, by the contrapositive again, if a partition contains an

element that fails to be a b-component wrt. every solution—call

such an element a redundant block—then that partition does not

correspond to a solution under any of them. We may therefore infer

that if a family of subsets of a query pattern contains an element

that is not a b-component wrt. to any solution, then that suffices to

conclude that that family of sets as such does not correspond to a

solution.

The fringe probe, as it will henceforth be called, tests each of the

elements in the respective families of sets at the fringe of the RGS

computation tree. It tries to find a member that is demonstrably

not a b-component under any solution, in order to dismiss that

family as a candidate partition. For each triple pattern in the set in

question the fringe probe asks each RDF source whether that source

can provide a blank node for a variable in that triple pattern. If not,

then it follows from what was said above that the set to which the

triple pattern belongs is not a b-component under any solution.

Hence, no combination of subsets in which it occurs corresponds

to a solution. There is one important proviso though; the subset in

question must be of cardinality higher than 1, since all singletons

are b-components trivially.

It should be emphasized that whether a BGP Pi is a b-component

wrt. a solution cannot be determined by syntactic means from the

form of the graph pattern alone since a BGP need not itself be

connected in order to match a b-connected graph. The concept of

a b-component is an irreducibly semantic notion, so probes are

necessary.

Moving towards a formal regimentation of these ideas, we be-

gin by noting that b-connected sets satisfy the condition that all

elements have a blank node in subject or object position. For easy

reference let the set of all such sets be defined as follows:

Definition 5.1.

Btr =df {(s,p,o) ∈ (I ∪ B) × I × (I ∪ B ∪ L) |s ∈ B ∨ o ∈ B}

The fringe probe, interchangeably referred to as the ∆-probe, can
now be defined abstractly as follows:

Definition 5.2. If Vars (Pi ) ⊆ dom(Ω), then

∆(Pi ,Ω) =def {µ : µ ∈ Ω ∧ µ (Pi ) ⊆ Btr }

The test case of interest is ∆(Pi , JPi KGi ) = ∅. This says that no
valuation of Pi over any RDF source binds a variable in a triple
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pattern t ∈ Pi to a blank node. Such a probe is a negative probe
and signals, or so we have surmised, that any partition in which Pi
occurs can be dismissed as a candidate partition. Proposition 5.3

confirms this:

Proposition 5.3. If Pi ⊆ P , |Pi | > 1, for any µ ∈ JPKcm (G )
then

Pi < f (µ, P ) if ∆(Pi , JPi KdGn
) = ∅ for every Gn ∈ G

Negativity is monotone wrt. set inclusion. That is, if Pi ⊆ Pj and
Pi is the BGP of a negative probe, then so is Pj . This is recorded in

Proposition 5.4.
2
Fig. 10 illustrates this simple but useful fact. As

shown, if the set {t1, t2} is dismissed, then all the partitions marked

in red can be disregarded too, as they all contain supersets of it.

Proposition 5.4. If Pi ⊆ Pj , and |Pi | > 1, then

∆(Pj , JPj KcG ) = ∅ if ∆(Pi , JPi K
d
G ) = ∅

This monotonicity property fits hand in glove with the RGS

algorithm selected for this paper, insofar as the algorithm has the

following properties: the algorithm computes families of subsets of

an input set. As the computation tree expands, the family of sets and

each of its elements increase in size (though not necessarily strictly).

This process continues until the input set is finally exhausted in the

leaves of the computation tree (cf. Fig. 9). Proposition 5.4 therefore

implies that a negative probe automatically dismisses all families of

sets below and including the current one, in particular the partitions

in the leaf nodes. In other words, a negative probe warrants the

termination of the RGS recursion, which in turn reduces the size of

the combinatorial space that will have to be explored.

It is actually possible to push the envelope a bit: Proposition 5.4

tells us rather more than we have exploited so far, namely that a

negative probe dismisses all families that contain a superset of the

negative probe irrespective of their location in the computation tree.
These families don’t have to be positioned below the point at which

the probe is performed in the tree, but might equally well occur

in sibling branches. This is a possibility that the RGS algorithm

allows. A negative probe can be used to trim all these branches.

Implementation-wise, this would involve caching and reapplying

probe results. Standard tabling techniques akin to memoization will

do. More on this in Sec. 6.

To round off this section, we mention that the ∆-probe has a
rather obvious translation to a SPARQL ASK query: the graph pat-

tern Pi of the probe translates into the graph pattern of the SPARQL

ASK query, and each triple pattern t ∈ Pi adds a filter expression
checking that triple pattern against the data for occurrences of

blank nodes, cf. Fig. 11.

6 COMPUTING QUERY DECOMPOSITIONS
The previous section defined a probe that identifies pruning oppor-

tunities. Furthermore, the RGS computation process outlined has

the property that combinations of subsets are built up recursively

in an iterative exploration of different ways to obtain a partition.

It follows that if a particular combination of subsets somewhere

in the RGS computation tree is discounted by a probe, then so are

2
Note that even though Pi ⊆ Pj , it is still not the case that JPi KcG ⊆ JPj KdG since the

execution contexts are not the same—the latter sets have no blank nodes in common.

subtrees. This is due to the property of the RGS algorithm that

any block in the computation tree is included in some block in the

level below, hence in effect, allows us to ignore an entire class of

partitions. In addition to this, the result of probes are also applied

for pruning in sibling branches using a tabling technique. That is, a

subtree in the RGS computation tree is liable to be discounted by

probes in sibling branches if it contains a block that is a superset of

probe pattern.

The probes themselves take the form of SPARQL ASK queries

designed to retrieve information obtained about the position of

blank nodes in the data. This information is used to determine

when a cell in a partition is too coarse or too fine–if it is found to be

either then none of the partitions that stem from that node in the

RGS computation tree need to be expanded, so the combinatoric

space shrinks.

The RGS-generating algorithm developed for the present pur-

pose is shown in Algo. 1. It is based on a well-known recursive

RGS-generating algorithm found in [11] (Algo. 4.22), which runs

in constant amortized time. We extend this algorithm by introduc-

ing a cut-off point that terminates the recursion, conditioned by

a function that identifies if a sequence update yields a redundant

block. The main mechanism of the algorithm is that it recursively

updates positions in the input sequence, in a controlled way that

ultimately produces RGS strings of the correct length. The algo-

rithm works position-wise from left-to-right. That is, it explores all

allowed updates of position l before recursively moving on to l + 1.
The variablem acts as an upper limit to what position l can be set

to, essentially tracking the max number of blocks allowed, based on

the largest value seen so far in the sequence. This is used to ensure

that the sequence, up to position l , satisfies the RGS condition.
Now, in order to keep the number of blocks that need to be

checked to a minimum, updating a value in sequence position is

performed at the onset of the function (lines 2-3) rather than in

the argument passed to the recursive call. By doing it this way, the

redundancy-checking function has enough information available

to deduce what new blocks were generated, hence only focus on

checking these wrt. redundancies (line 4). Lines 6-7 returns a valid

RGS sequence, by identifying that it has reached a leaf node of the

correct depth (i.e. sequence length same as the triple pattern se-

quence). Lines 9-17 implements the main RGS generating process in

the way outlined above, and described in detail in [11], by updating

the sequence assignments recursively, altering the position pointer

and the max value of allowed allocations in a controlled matter.

The call rest-growth(1,0,0,A) where A is a sequence of length |P |
and A[i] = nil initializes the partition generation process, and the

output is a set of RGSs.

The actual process of identifying redundant blocks is captured

by Algos. 2 and 3. More specifically, Algo. 2 yields a redundancy

identifying function, in the correct form of a two-place function

as required in Algo. 1, if partially instantiated with a sequential

ordering of disjoint BGPs that constitutes a partitioning of the

global query P into atomic elements (e.g. triple pattern singletons).

That is, identifying redundancies using the method outlined earlier,

depends on being able to translate an RGS to a set of BGPs (i.e. a

distribution), which is what the BGP sequence provides by position-

wise mapping.
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Figure 10: Partition lattice
{{t1}, {t2}, {t3}, {t4}}

{{t1}, {t2, t3}, {t4}}{{t1, t3}, {t2}, {t4}}{{t1, t2}, {t3}, {t4}} {{t1, t4}, {t2}, {t3}} {{t1}, {t2, t4}, {t3}} {{t1}, {t2}, {t3, t4}}

{{t1, t3, t4}, {t2}}

{{t1, t2, t3, t4}}

{{t1, t2}, {t3, t4}}{{t1, t2, t4}, {t3}}{{t1, t2, t3}, {t4}} {{t1, t3}, {t2, t4}} {{t1, t4}, {t2, t3}} {{t1}, {t2, t3, t4}}

{?s p:p1 ?y.,

?s p:p2 ?z.}

ASK WHERE
{?x1 p:p1 ?y1.
?x2 p:p2 ?y2.
filter(isBlank(?x1) || isBlank(?y1))
filter(isBlank(?x2) || isBlank(?y2))}

Figure 11: ASK probe

Algorithm 1 Generating partitions

Require: Function:

some-redundant(x ,y) ← some-redundant(x ,y, P⃗ )
Require: Input:

seq: current RGS

l: position in seq to be updated

x: value to be assigned to seql
m: largest value allocated so far

1: function rest-growth(l ,x ,m, seq)
2: nseq ← seq
3: nseq[l]← x
4: if some-redundant(nseq[1, l], seq[1, l]) then
5: return ∅
6: else if l = len(seq) then ▷ Length of seq is constant

7: return {nseq} ▷ Valid distribution

8: else
9: iExp ← ∅ ▷ Solutions generated in lower level

10: mExp ← ∅ ▷ Solutions generated in sibling branch

11: for i = 0 tom do
12: iExp ← iExp ∪ rest-growth(l + 1, i,m,nseq)
13: end for
14: if m < (n − 1) then
15: mExp ← rest-growth(l + 1,m + 1,m + 1,nseq)
16: end if
17: return iExp ∪mExp
18: end if
19: end function

In Algo. 2, lines 2-3 are responsible for a) identifying new blocks

that were not in the former allocation, and b) checking these (of

size > 1) for redundancies. Here, the importance of initializing the

input sequence that kicks off the RGS-algorithm to nil rather than

Algorithm 2 Check if new alloc introduces a redundant block

Require: Input:

P⃗ : sequence of disjoint BGPs exhausting the global query P .
Require: Functions:

rg2bgp(rдs,ps): returns BGPs, given RGS and BGP sequence

1: function some-redundant(newseq,oldseq, P⃗ )

2: D← rg2bgp(newseq, P⃗ ) \ rg2bgp(oldseq, P⃗ )
3: return {D ∈ D : |D | ≥ 2 ∧ ¬viable(D)} , ∅ ▷ true/false

4: end function

0 comes into play, as the former will not count as block allocations

when extracting BGPs (the function rg2bgp). If any new block in

the sequence allocation is deemed redundant, then the sequence

captures a family of likewise redundant patterns that should not be

further explored.

Algo. 3 defines the part that handles both the ∆-probing as well

as a tabling-approach that facilitates pruning in sibling branches.

Prerequisites to calling this function is a) a set of endpoints, used

for probing, and b) a global set of BGPs that have been deemed

redundant (aka. nogoods, initially empty). The first step (lines 2-

3) captures the secondary pruning opportunity by checking if the

block in question is a superset of another already deemed redundant.

If so, then the subject block is redundant as well. Lines 4-6 are

responsible for the ∆-probing, as well as updating the collection

of redundant patterns. That is, we check that there exists at least

one answer that, when taking the image wrt. the block in question,

yields a triple without any blank nodes. This involves a SPARQL

ASK probe against each relevant source. We note that a source

overlap check is essentially baked into this stage, since if two blocks

do not have any sources in common, then the ∆-probe vacuously
returns an empty set, i.e. the union of blocks is redundant. If the

check fails, then the block is added to the set of nogoods, hence

building up knowledge regarding block redundancies on-the-fly,

before the function returns f alse . Otherwise it returns true to

indicate that the block is non-redundant and must be included in

partitions. Note that the set of nogoods does not strictly contain all

blocks that have been deemed redundant (only the probed ones).

Rather, it is the closure of this set wrt. ⊆ (Proposition 5.4) that does

this, hence the need for lines 2-3.

Finally, we note that the output of the RGS-algorithm is a set

of RGSs and not a set of distributions. Applying the translation

function rg2bgp, noted in Algo. 3 to the elements in this set yields

the set of distributions sought.
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Algorithm 3 Block redundancy check

Require: Global variables:

S : set of sources
∗noдoods∗: set of nogood BGPs

Require: Functions:

∆-qery(P ): create a ∆-query from BGP P
probe(P , s): SPARQL ASK for pattern P against source s

Require: Input:

Pi : a BGP
1: function viable(Pi )
2: if ∃Pj ∈∗noдoods∗Pj ⊆ Pi then
3: return false

4: else if {s ∈ S : probe(∆-qery(Pi ), s )} = ∅ then
5: ∗noдoods∗ ← ∗noдoods ∗ ∪ {Pi }
6: return false

7: else
8: return true

9: end if
10: end function

7 PRE-PROCESSING
The final group of heuristics we shall look into, is that of problem

pre-processing. First, we will explore a pre-processing stage that

simplifies the problem that is fed to the partition generating algo-

rithm, based on identifying sets of triple patterns that are exclusive

to a single source. Secondly, we explore the effect that specific se-

quential orderings of triple patterns have on the efficiency of the

RGS computation.

7.1 Exclusive groups
The theory of federation developed in [16] and [17] and further

explored in this paper, is based on the idea of using signatures—
aka. RDF vocabularies—to route BGPs to the sources that may be

able to answer them. The signature of a BGP or RDF graph S is

the set S2 \ (V ∪ B) where S2 denotes the projection of S onto its

second coordinates.
3
Signatures are assumed to be known ahead of

the federation process hence available to be used to constrain the

generation of query partitions whenever possible.

A natural way to use them is to take advantage of exclusive
groups in the global query. An exclusive group is a subquery which

is such that its signature is included in the signature of exactly one

source. The importance of these subqueries for heuristic purposes

was, to the present authors’ knowledge at least, first noted by [15],

who observed that these patterns may be used to simplify the query

decomposition process. The idea is that, since exclusive groups can

only be answered by a single source, it is not necessary to subdivide

them. Such a BGP can be shipped as is to be evaluated as a whole

in a single execution context.

With respect to the process of generating partitions, this is the

same as to say that exclusive groups can be treated as atomic units:

the partition generator will compute all ways of combining exclu-

sive groups with singletons to form a partition of a set, but no more

3
Using signatures for routing queries is a common strategem in the literature (cf. [5]

and [15]) for which we claim no originality.

than that. In other words, exclusive groups reduce the number of

objects that is to be combined.

In the case where there are non-trivial exclusive groups—i.e.

exclusive groups of size larger than 1—the size of the set of partitions

that keeps those groups undivided will be smaller than the set of

all partitions by the number of exponents that corresponds to the

sum of elements in the exclusive groups in question.

In general, if P is a set ofn elements and Pi a subset of k elements,

then the number of partitions of P which has Pi as an element is

Bn−(k−1) . When Pi is a singleton then obviously Bn−(k−1) = Bn
and so there is no reduction.

Generalizing to a finite sequence P1, . . . , Pm of subsets of P , we
have that the set of partitions of P which has every Pi for 1 ≤ i ≤ m
as an element is

B(n−
∑n
k=1 ( |Pk |−1))

This number may still happen to be equal to Bn , however empirical

evidence suggests that non-trivial exclusive groups are frequent

(cf. 8). When they exist, the combinatoric reduction is significant.

For instance for a query with 10 triple patterns, if there are two

exclusive groups each with three triple patterns, the number of

partitions that is computed drops from 115975 to 52.

7.2 Ordering of triple patterns
The final aspect that we will explore is the ordering of the triple

pattern sequence that the RGS-algorithm ultimately utilizes. That

is, the effectiveness wrt. branches pruned and number of checks

performed, is very much affected by ordering of elements in the

RGS input sequence. In essence, we want to prune branches as far

up in the tree as possible.

Since the aim is to prune the tree as high up as possible, this

indicates that "failing early"-approach is warranted. Hence, we

seek a linearization of the query as a sequence, where adjacent

triple patterns in the sequence are unlikely to produce b-connected
graphs.

We define a simple heuristic based on the assumption that stars

are more likely to contain blank nodes, hence placing two triple pat-

terns belonging to the same star next to each other in the sequence

is less likely to produce effective pruning.

The heuristic is based on the concept of characteristic sets as
described in [6] to identify stars based on outgoing edges. We utilize

characteristic sets to group triple patterns, for so to sequentially

pick one of each set to produce the sequence. The characteristic set

for a node s in BGP P is given by:

Sc,t (s, P ) =def {(s,p,o) : ∃p,o . (s,p,o) ∈ P }

and the collection of characteristic sets in P is given by

Sc,t (P ) =def {Sc,t (s, P ) : ∃s,p,o . (s,p,o) ∈ P }

That is, we pick, in order, one triple pattern per characteristic set, so

as to increase the likelihood that adjacent patterns in the sequence

do not share blank nodes. Thus, the pruning starts out with a pair

of triple patterns that do not occur in the same star, hence less

likely to share a blank node. Now, the inclusion of exclusive groups

makes it a bit more complicated. Triple patterns belonging to the

same exclusive group are more likely to share a blank node than

those that do not. However, unlike characteristic sets, the triple

patterns that constitute exclusive groups do not necessarily share
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join variables. Hence, we seek a triple pattern sequence that factors

in these two features at the same time, in a way that further reduces

the likelihood that two adjacent triple patterns share a blank node.

Algo. 4 produces the ordering that we seek, hereby referred to as

E/Cs -ordering.

Algorithm 4 Generate E/Cs -ordered sequence

Require: Functions:

get-exclusives(P ): returns a set of exclusive groups
count(S): returns the size of S .
sort≤(f , S): sort elements of S in inc. order according to f [S].
interleave(S): Given a sequence of collections (possibly dif-

ferent sizes), sequentially pick the head of each, repeat for the

tail, until all are exhausted. If collection is empty, skip to next.

Require: Input:

P : BGP, global query
1: function e-c-seq(P )
2: E← get-exclusives(P )
3: current ← ∅
4: new ← Sc,t (P )
5: while current ! = new do ▷ Merge CS wrt. excl. groups

6: current ← new
7: if Si , Sj ∈ current , Si , Sj , AND
8: E ∈ E s.t. E ∩ Si , ∅ , E ∩ Sj then
9: new ← (current \ {Si , Sj }) ∪ {Si ∪ Sj }
10: end if
11: end while
12: SeP = ∅
13: for Si ∈ new do ▷ Substitutes in exclusives

14: Sei ← {S
′ ⊆ Si : S

′ ∈ E} ▷ exclusive groups in Si
15: Sni ← {{tp} : tp ∈ Si \ (

⋃
Sei )} ▷ unit clauses of rest

16: SeP = SeP ∪ {S
e
i ∪ S

n
i }

17: end for
18: return interleave(sort≤ (count, S

e
P ))

19: end function

Lines 5-11 define a fixpoint that produces collections of triple

patterns that satisfy our criteria. Lines 12-17 are responsible for

transforming triple pattern into BGPs and substituting in exclusive

groups. That is, all elements are turned into singleton sets of triple

patterns, except for exclusive groups that may be non-singleton sets.

Line 18 is responsible for sequentially picking from the collections,

so as to form a sequence. What the algorithm finally returns is a

sequence of BGPs which basically acts as a position-wise map from

RGS strings to atomic BGPs.

8 EVALUATION
8.1 Experimental setup
The queries that are of interest for study are those that are of a

moderate size and complexity, with structures that are commonly

seen in practice. From the data side, the experiment requires that a)

blank nodes occur in the data, and b) that the data is partitioned over

more than one source and in a variety of configurations involving

both horizontal and vertical slicing.

Alas, to the authors’ knowledge, no benchmark suite involving

blank nodes and (partially) overlapping data sets is currently avail-

able, hence there was a need to create a set of tests specifically for

this paper. However, instead of starting completely from scratch,

we decided to reuse the well-known Waterloo SPARQL Diversity

Test Suite (WatDiv) [2] as a basis, using both query patterns and

the dataset that the benchmark provides to generate distributed

test cases.

8.1.1 Query selection. We selected a handful of query templates

from the WatDiv Basic Testing
4
use-case. More specifically, we

chose queries that were either snowflake-shaped or complex-shaped

(WatDiv categories), which ensured that star-shapes occurred as

sub-patterns of the overall query. More concretely, the queries

selected were WatDiv basic test queries F1, F3, F5,C1 and C2.
The importance that the queries contain star-shaped patterns is

due to the nature of how blank nodes usually are manifested. As

noted in [7], blank nodes are not only prevalent in the wild, but

they tend to occur as the subject of more than just a single triple.

More specifically, the edges that connect to blank nodes are more

likely to fan-out rather than in, taking on a star-like structure with

blank nodes in the center.

8.1.2 Data slicing templates. Based on the aforementioned ob-

served frequency of blank nodes in star-shaped patterns, we define

some abstract templates that aim to capture typical data distribu-

tions. That is, a template describes a data distribution, modulo a

query pattern. More specifically, we define slicing templatesT 1−T 3,
visualized in Fig. 12 for the case of WatDiv query F5. In the figure,

C and D denote the subgraphs that are combined in various config-

urations. It is worth noting that C has a special form: it contains

only the dominant star
5
and any incoming edges to the center node

(colored in red), the node subject for blank node substitution. In the

cases where a blank node is substituted into the center node of the

pattern C , we denote this with a superscript B. Template figures

for the remaining queries can be found in the appendix.

?v3

?v0?v2

?v4

?v1

?v5

?v6

gr:price

gr:offers

gr:valid
Through

gr:includes

og:title
rdf:type

C D

T 1 = {CB ∪ D,C ∪ D}

T 2 = {CB,D}

T 3 = {CB,CB ∪ D}

Figure 12: Templates for F5

The description and motivations behind the slicing templates are

as follows:

T1: system wide vocabulary The query pattern is duplicated

twice, i.e. total vocabulary overlap of slices, with a blank node

inserted into the center of the dominant star in one of the

4
http://dsg.uwaterloo.ca/watdiv/basic-testing.shtml

5
The largest star-pattern in the query.

http://dsg.uwaterloo.ca/watdiv/basic-testing.shtml
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slices. The other slice remains unmodified wrt. how it occurs

in the original dataset. Intuitively, this template is meant

to capture the case where a vocabulary is reused as a com-

plete data specification for a domain. That is, the template

captures a distribution akin to that where we have different

implementations of the same specification. An example of

such a setting is the case where sensors and IoT-devices seri-

alize data using a shared vocabulary (such as the Semantic

Sensor Network vocabulary) but instantiates data differently

where some use blank nodes.

T2: linked topical islands Pattern C , containing the domi-

nant star, is used to create the first dataset slice. Futhermore,

a blank node is inserted in the center. The second slice is

generated from the remaining triple patterns of the query, i.e.

D. Hence the original pattern is partitioned along the border

of the dominant star. The template is meant to capture the

case typically found in the LOD-world, where each source

typically constitutes a linked topical island using its own vo-

cabulary, but where there are outgoing links to elements in

other data islands. A concrete example is the links between

DBPedia, LinkedGeoData and Freebase.

T3: standard vocabularies As T2, but the second slice gets

the complete original query pattern and not just the remain-

ing difference. Furthemore, a blank node is inserted in the

center of C in both slices. This template is meant to capture

the case where a vocabulary has high reuse, but is seldom

used only on its own. That is, often used with other vocabu-

laries when representing data in individual sources. Concrete

examples of such high reuse and widely deployed vocabu-

laries are FOAF and the RDF Data Cube vocabulary.

It is worth noting that each template only generates two slices,

i.e. two sources. We do this as it is not the increase in number

of sources itself that has an effect on the number of distributions

generated for a global query. Rather, it is whether or not individual

triple patterns are exclusive to a single source that is the key player.

Now, for each query and for each abstract template, we derive

a set of SPARQL CONSTRUCT queries that instantiates the distri-

bution of the data in the query as intended by the template. More

specifically, fragments of the selected query patterns were used

to generate SPARQL CONSTRUCT queries that both sliced and/or

replicated data, as well as inserting blank nodes in predetermined

positions. These were then used to generate data slices from the

original WatDiv dataset (10M Triples dataset from [2]), for so to be

exposed as separate SPARQL endpoints.

8.2 Metrics
The main metric of interest is, of course, the relative reduction of

the number of partitions that need to be evaluated, indicating the

effectiveness of the pruning heuristics. Furthermore, we wish to

determine the relative efficiency of the RGS-algorithm in terms of

effectively utilizing the heuristics, as well as the costs associated

with on-the-fly information gathering. That is, how many distinct

probes are evaluated , how many of these probes identify redundan-

cies (indicating primary pruning), and how many redundancies are

identified based on subset lookup in the table of previously identi-

fied redundancies (denoted ⊆-hits, indicating secondary pruning).

We also measure the effect of the outlined ordering approach and

exclusive groups. The effectiveness of the outlined ordering algo-

rithm is judged by comparing the measured metrics with averaged

sample runs of 100 random orderings. The effectiveness of treat-

ing exclusive groups as atomic entities is indicated by the relative

reduction in the Bell number.

8.3 Results
The results of the experimental run are shown in Table 1. Table

heading |E(P ) | denotes the number of exclusive groups found in

pattern P , while |P \
⋃
E(P ) | denotes the number of non-exclusive

triple patterns. Furthermore, BellE indicates the Bell number of

the problem where exclusive groups are treated as atomic entities.

The column header ∆-checks / hits indicate the number of distinct

block probes that needed to be performed and how many of them

successfully identified redundant blocks for primary pruning, while

⊆-hits indicates how many blocks were identified as redundant

by the secondary check in sibling branches. Finally, the Partitions

column indicates how many distributions the algorithm returns.

Immediately, we notice that treating exclusive groups as atomic

entities can greatly reduce the problem, as indicated by comparing

the Bell numbers. Hence the pre-processing step is clearly justified.

Moving on to analyzing the effectiveness of the query decom-

position algorithm itself, we can clearly see that it is effective in

reducing partitions by comparing the BellE-number with the num-

ber of output distributions produced.

Diving into details, we focus on the internal measurements pro-

duced when running the pruning algorithm, using the previously

outlined ordering. These results are found under the E/Cs -ordering
table heading. We first look at the number of ∆-checks performed; a

high number of ∆-checks, relative to the size of the powerset of the
input problem, will tell us that many blocks were probed, indicating

a generally low pruning effect, while a low number indicating the

opposite. For the collected data, we get that in the worst case it

requires that 1/2 of the subsets needed to be probed, while in the

best case, only about 1/20 need to be probed. We interpret this as

indicating a high to medium pruning effectiveness.

Moving on, we compare the relative values of ∆-hits versus ⊆-
hits. More specifically, a low ∆-hit count coupled with a low ⊆-hit

count would indicate effective primary pruning in the higher levels

of the computation tree, hence the ideal sought. A high count in

∆ and low in ⊆ indicates a dominating primary pruning, but in

relative low level nodes, while the opposite order would indicate a

dominating secondary pruning.

We first explain the odd ones out in terms of {F3, F5,C1,C2} : T 2.
Here, the pre-processing stage reduces the problem to that of calcu-

lating the combination of two exclusive groups. That is, in all cases,

n = 2, there are no non-exclusive triple patterns, and the exclusive

groups do not have overlapping sources. Hence, the probing stage

essentially reduces to a source overlap check discounting the union

of the two exclusive groups, without incurring an ASK probe.

For F1 : T 1 and F1 : T 3, we see that the ⊆-hits dominate that of

∆-hits. It does so as well in C2 : T1, but due to the relatively high

cardinality of the powerset for the case, the ratios are 1/20 and 2/20

thus not significantly different. For the remaining cases, the ∆- and
⊆-hit counts are about the same, and both relatively low compared
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Table 1WatDiv evaluation results

E/Cs -ordered Avg, 100 randomized orders

Query n Bell Templ. |E(P ) | |P \
⋃
E(P ) | BellE ∆-checks / |hits| ⊆-hits ∆-checks / hits ⊆-hits Partitions

F1 6 203

T1 0 6 203 31/5 19 33/7 41 52

T2 2 2 15 7/3 1 8/4 2 5

T3 1 5 203 31/5 19 33/7 38 52

F3 6 203

T1 0 6 203 20/9 10 23/12 30 15

T2 2 0 2 1/1 - 1/1 - 1

T3 1 4 52 16/5 5 16/5 10 15

F5 6 203

T1 0 6 203 21/10 11 23/12 29 15

T2 2 0 2 1/1 - 1/1 - 1

T3 1 4 52 15/4 5 16/5 11 15

C1 8 4140

T1 0 8 4140 33/22 20 38/27 81 15

T2 2 0 2 1/1 - 1/1 - 1

T3 1 4 52 15/4 5 16/5 12 15

C2 10 115975

T1 0 10 115975 54/50 95 54/50 95 5

T2 2 0 2 1/1 - 1/1 - 1

T3 1 3 15 7/3 1 8/4 2 5

to the powerset count, hence indicating that the combined pruning

approach is effective in these cases.

Finally, we compare the statistics for the E/Cs -ordering, as de-
scribed so far, with that of the statistics generated by averaging 100

randomized orders of the original problem sequence. We see that in

all cases, the E/Cs -ordering never performs worse than the average,

both in terms of primary and secondary pruning efficiency, and in

most cases is significantly more efficient in terms of skewing the

∆/⊆ ratio towards ∆ rather than ⊆, hence towards the preferred,

less computationally expensive, primary pruning. This indicates

that the ordering, in general, is more likely to result in a more

efficient run of the RGS-algorithm.

In summary, we interpret the results to indicate that the overall

algorithm and optimizations are feasible in practice.

9 RELATEDWORK
Distributed query processing involves analyzing a query to identify

a set of relevant RDF graphs, with or without the aid of statistics,

to which subqueries can be assigned. Examples of this approach

include [1, 4, 9, 10] and [15].

However, little emphasis has been dedicated to cater for the

occurrence of blank nodes when it comes to the decomposition

of the queries and ensuring soundness and completeness. In fact,

apart from the authors previous work in [17], the research found

in literature are all based on the assumption that blank nodes do

not occur in the sources, hence the simple query-decomposition

strategy partitioning into unit clauses, as implemented in DARQ

[10] is sufficient. FedX [15], improves this by creating exclusive

groups, but there is still only one partitioning of the original query

at play, and does not address the blank node issue.

Following this path of assumptions, most current work regard-

ing distributed query answering (without blank nodes), such as

[14] and [8], focus on the process of source selection past that of

simple triple-pattern wise source selection in order to reduce the

number of sources queried. This addresses an orthogonal aspect of

distributed query answering than what this paper considers, and

more importantly, does not address the problem of blank nodes.

Furthermore, both rely on the assumption that one can identify

authoritative sources, a restriction that does not universally fit for

all cases.

Another line of inquiry that tries to address the issue of dis-

tributed query processing by focusing on reducing client-server

load, is that of Triple Pattern Fragments (TPFs), as outlined in [19]

and [20]. However, this assumes blank-node free sources, and as-

sumes that existing data is converted into fragments beforehand,

hence not a general solution.

Finally, it should be noted that the relationship between the

present theory and the SPARQL 1.1 federation extension, is that

the two are essentially orthogonal to each other: the latter, by

providing the SERVICE keyword for source selection, provides

a way of evaluating different parts of a query against different

endpoints, but it doesn’t tell you which parts. The present paper, in

contrast, is concerned precisely with the question of which parts,

that is, finding the decompositions.

10 CONCLUSION
Summing up the main tenets of the present paper, we have ar-

gued that zero-knowledge SPARQL processing is mathematically

speaking just the problem of computing partitions of a query. From

the perspective of computer science, however, this will not do as

such, since the numbers of partitions of a set grows exponentially

with the size of the set. A generation algorithm that is amenable

to heuristic control is therefore needed. Existing algorithms for

computing restricted growth strings seem to fit the bill as they

allow semantic information obtained from probing the source for

occurrences of blank nodes to be interleaved with the partition

generation process in such a way that unfruitful branches can be

detected and aborted.

We have implemented this idea in running code and subjected

it to empirical testing. The results suggest that this may be a line

of research worth pursuing. In many cases queries that with no
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heuristics applied are way out of reach of efficient computation fall

well within it after the heuristic countermeasures are deployed.

More work needs to be done, though, and we note the following:

the efficiency of the trimming of the RGS computation tree is quite

dependent on the ordering of the subsets within the encompassing

family (concretely a vector) of sets. This is an interesting topic for

further study, perhaps with dynamic reordering.

Another area that holds some promise, is to explore other ways

of probing the data sources, and other ways of preprocessing the

combinatorial problem.

From the algorithmic side, it would be interesting to compare

different restricted growth algorithms in terms of their effectiveness

for the proposed kind of interleaved pruning. For lack of space, we

leave this one and other possibilities for future work.
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APPENDIX A - QUERIES

Figure 13: Query F1
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Figure 14: Query F3
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Figure 15: Query C1
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Figure 16: Query C2
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