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Abstract

This paper is a foundational study in the semantics of federated query answering of SPARQL BGPs. Its specific concern is to
explore how the size of intermediate results can be reduced without, from a logical point of view, altering the content of the
final answer. The intended application is to reduce communication costs and local memory consumption in querying dynamic
network topologies and highly distributed, share-nothing or sharded architectures. We define row-reducing and column-reducing
operations that, if a SPARQL resultset is viewed as a table, reduces the number of rows and columns respectively. These operations
are deliberately designed so that they do not anticipate the unfolding of the evaluation process, which is to say that they do not
presuppose knowledge about the structure or content of data sources, or equivalently, that they do not require data to be exchange
in order to make intermediate results smaller. In other words, the operations that are studied are based solely on the shape of
evaluations trees and the distribution of variables within them. The paper culminates with a study of different compositions of the
aforementioned reduction operators. We establish mathematically that our row- and column operators can be combined to form a
single reduction operator that can be applied repeatedly without altering the semantics of the final result of the query answering
process.
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1. Introduction

Federated SPARQL processing concerns the task of answer-
ing a a global query using the combined information from dis-
tinct sources. It involves breaking up a global query into a set
of jointly exhaustive subqueries each of which is directed to a
particular SPARQL endpoint before the results are returned to
the federated query processor and combined into a correct an-
swer to the initial global query, if one is to be had. That the
exploitation and dissemination of Semantic Web data requires
powerful federation engines is something of a truism, given the
Web wide scope of names in RDF and the whole Linked Data
philosophy.

This paper formalizes and investigates various optimiza-
tions that can be used to lighten the overall dataflow that this
process consumes. More specifically, it is concerned with the
question of how to reduce the size of intermediate result without
compromising the semantics of the final answer of said global
query.

Although the problem of keeping intermediate results small
is of interest to both local and federated query execution, it is
particularly pressing in the distributed case where the triples
participating in a join may be stored on different servers. Such
cross-site joins require network communication during join eval-
uation, that is, data has to be exchanged between servers in or-
der to evaluate the join in question. Needless to say, this will
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claim bandwidth and CPU time proportionate to the amount of
data that is exchanged, and as pointed out in [1] may easily
grow with the overall data size to exceed the capacity of individ-
ual servers. Hence if the size of intermediate results is allowed
to grow unconstrained, then in addition to any capacity issues
with bandwidth and/or remote servers, it is likely that memory
overflow problems will propagate back to the local thread of
execution. Therefore, how little data one can send and keep
in memory without sacrificing the precision and completeness
of the final query answer should be a worthwhile question to
address.

We approach this question by studying combinations of re-
duction operators, as we shall call them, in different order. Some
of these operators are best regarded as part of the folklore, al-
though we believe we offer at least one new one as well. How-
ever, the main contribution of the present paper is an integrated
formal account of these operators that allows them to be studied
in combination in a mathematically principled manner.

There are two kinds of reduction operators: operators that
remove redundant rows and operators that remove redundant
columns. We are after the conservative cores, so to speak, of
intermediate results, by which we mean the smallest amount of
data that needs to be retained to prevent information loss in the
final query answer.

The first hurdle here is to clarify what it means for a feder-
ated SPARQL processor to lose information. Our take on this
is to say that a federated SPARQL processor should return the
same answer set (to make life a bit easier, we adopt the set
semantics rather than the multitset semantics for SPARQL) as
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the one that would be returned were the query to be executed
against the merge, in the technical sense of [2], of the contribut-
ing RDF graphs. Of course, this passes the buck to the con-
cept of sameness, and since equality is in some cases too much
to ask, we shall have to be explicit about the conditions under
which we regard two answer sets as equivalent.

The concept of equivalence should be robust enough to al-
low a reduction operator to be applied in a second pass with-
out changing the semantics of the final answer, for as it turns
out, some reduction operators give rise to new redundancies
that show up after the reducts are combined. Since we want
intermediate results to be as small as possible, we should be
allowed to make a second pass to remove the surplus.

At this point, the conceptual situation is already quite com-
plex. To bring some order to the investigation, therefore, we
start the formal development by summarizing our requirements
in an abstract characterization of the concept of a reduction op-
eration as we construe it. This characterization serves a dual
purpose: first it makes it perfectly clear how the concepts of
losslessness (aka. answer set completeness), answer set equiva-
lence, and reduction of intermediate results are connected. Sec-
ondly, and more interestingly, the abstract characterization con-
stitutes a stratum that allows the interaction between reduction
operators to be studied in a principled manner: complex reduc-
tion operators can be formed by composing elementary ones
and checking that the result satisfies the abstract definition. One
of the novel things to come out of this, we believe, is the find-
ing that not all compositions are equally effective, some will
produce smaller intermediate results than others.

Three elementary reduction operators are selected for closer
study. Some of the underlying ideas will have a familiar ring to
them as they sometimes trade on themes that recur in database
theory in one form or another. We shall try to indicate the con-
nections as we go. The operators in question can be described
informally as follows: the first is a projection pushing opera-
tor that removes columns when they no longer contribute, typ-
ically by providing join arguments, to the evaluation process.
The second is the operation that removes rows if they contain
blank nodes in join position. This heuristic is based on a re-
sult from [3] which entails that any federated evaluation tree
that produces a correct answer can be assumed to be of a form
that makes intermediate results disjoint wrt. blank nodes unless
they lie on the same branch. To the best of our knowledge, this
simple but generally applicable reduction operator is a novel
contribution of the present paper. The third and final operation
is based on the relation of informativeness between answer sets.
It is an adaptation of a concept from database theory explored
by Libkin in [4, 5], though we modify it and put it to a quite
specific use. Briefly put, we use the informativeness relation to
select cardinality-minimal but equivalent subsets of an answer
set. We think of the former as compressions or kernels of the
input set, and show that the operation taking an answer set to
its kernel is a reduction operation.

An outline of the paper, and a summary of its contributions
goes as follows: we give an abstract characterization of reduc-
tion operations in general in Section 6. In Section 7 we define a
projection pushing operation, or truncation as we prefer to call

it, that is not in itself new. What is new, besides the operator for-
mulation of it, is this: first we demonstrate that the truncation
operator adheres to the abstract pattern of a reduction operator.
Secondly, we prove that truncation is optimal in the sense that,
given certain natural provisos, no column-reduction operation
yields smaller intermediate results. Next, in Section 8 we study
the operation of removing rows with blank nodes in join posi-
tions from intermediate results and show that that too consti-
tutes a reduction operation in our sense. Although it is a rather
obvious operation, we believe that the general applicability of
it, that is, that fact that it is a reduction operation that may be ap-
plied across the board to all federated SPARQL evaluation trees
without loss of results, is established for the first time in the
present paper. In Section 9 we formulate the concept of infor-
mativeness and apply it to identify cardinality minimal equiva-
lent subsets of an answer set. As mentioned already, whilst the
relation of informativeness is not new, we believe this particu-
lar application of it is. As the reader should by now have come
to expect, we also prove that it is a reduction operation in the
abstract sense. Section 10, the final substantial section of this
paper, is largely example driven, although it opens with a cou-
ple of corollaries that state that compositions of the elementary
reduction operations yield reduction operations. The examples
are designed to show that the situation wrt. combining reduc-
tion operations is rather subtle and multi-faceted. Two general
lessons can be learned: first, ordering matters; some composi-
tions produce smaller answer sets than others. Just how small is
a question we leave for future research. That is we do not offer
a minimality result for any of the combined operations similar
to that for the truncation operator, although we can say certain
things about which combinations are not minimal. The second
lesson to be learned is that when row-reduction and column-
reduction operations are made to act in consort, they reduce
intermediate results beyond the threshold of the row operation
acting alone. That is, the reduct of an answer set under the
complex operation will contain fewer rows than the reduct of
the same set under only the row operation.

2. Related Work

A substantial amount of research has been produced that is
relevant for reducing intermediate results in federated SPARQL
processing.

One line of research is that of algebraic optimization of
SPARQL queries. Here, algebraic equivalences are used to
rewrite queries into ones that can be computed more efficiently.
In [6], algebraic laws for projection pushing and filter manipu-
lation for SPARQL are given. The relation to the present work
is first and foremost when it comes to the matter of projection
pushing, which corresponds to the operation we call truncation.

Optimization rules are also studied in [7], in the context of
the SERVICE operator of the SPARQL 1.1 federation exten-
sion and the interplay with OPTIONAL patterns. This is not
directly comparable to the present work, since only basic graph
patterns are allowed hence neither OPTIONAL or SERVICE
operators, or any similar operators are catered for. However,
that work is generalized to SPARQL queries without the use of
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the SERVICE operator in [8], presenting algebraic equivalences
for SPARQL federated queries that utilize shipping of interme-
diate results through the use of either the SPARQL VALUES or
FILTER operators in order to reduce intermediate results. The
same paper further presents a rewriting algorithm that performs
filtering of blank nodes in the shipped values, based on overlap-
ping variables. However, this process is applied stepwise from
one node to the next in the evaluation tree rather than holis-
tically for the whole evaluation tree as such. Hence solutions
with blank nodes in join positions might linger in intermediate
results until the evaluation process reaches the point in the eval-
uation tree where the relevant join occurs. Thus, intermediate
results are not as small as they can be, and not as small as those
produced by the operators described in this paper.

Taking stock, the main difference between the abovemen-
tioned line of work, is that in this paper, the focus is on studying
different combinations of generic reduction operators, and how
they affect results rather than the study of algebraic rewriting
rules for the query language. For instance, the truncation op-
eration that is studied in Section 8 of the present paper yields
the same results as the SPARQL-algebraic projection pushing
technique outlined in [6], but within a logical framework for
studying answer preservation in a federated setting.

Another line of relevant research is that of query plan opti-
mization. A paradigmatic case is that of finding an optimal join
ordering based on selectivity estimates for the leaves [9]. These
approaches typically focus on coining cost functions for deter-
mining selectivity of triple patterns, and are based either on gen-
eral heuristics regarding the structure of triple patterns ([10])
or cost functions generated from concrete datasource statistics
([11] and [12]). Furthermore, there is a substantial amount of
work on rewriting the query plan based on grouping triple pat-
terns together by variable-counting and aggregated sums based
on previously mentioned cost functions ([13] and [12]). The
present work is best seen as being orthogonal to both join-order
optimization and grouping of triples. More concretely, the ap-
proach outlined in this paper is agnostic wrt. the form of a
particular evaluation tree, that is wrt. its structure understood
as the selectivity of patterns it contains and its join order.

Yet another branch of optimizations of relevance is based on
restrictive source selection. Here, the idea is to avoid overesti-
mating the number of sources that need to be included in the
evaluation, as this incurs more network traffic than necessary.
Some approaches, such as [14], assume that the data is cleanly
partitioned into sources, assuming that sources do not share
vertices. Other approaches rely on knowledge regarding triple
duplication ([15] and [16]) or join-awareness ([17] and [18])
through the use of indexes or other coordination mechanisms,
in order to reduce intermediate results being transferred. Either
way, these approaches presupposes knowledge as to where the
concrete data occurs, something that our approach is assumed
not to have access to.

With respect to both source selection and query plan opti-
mization, the work in this paper introduces operations that given
any query plan can be applied to the nodes in that tree in order
to produce their conservative cores. It is therefore fully com-
patible with approaches that seek to e.g. limit network com-

munication by selecting sources wisely or reduce payloads by
leveraging semi-joins.

There is also a general difference of nature between this
paper and all the mentioned related work. That is, we study
reduction operators adhering to a certain mathematical frame-
work for answer preservation that ensures that the final answer
to the global query is to stay the same. The concept of sameness
that is appealed to here will be defined in due course, and is to
the best of the authors’ knowledge a novel contribution. Sec-
ondly, in order to identify what may be thought of as conserva-
tive cores of intermediate results, the present paper pays partic-
ular attention to and leverages the semantics of blank nodes in
SPARQL semantics. The topic of blank nodes in SPARQL fed-
eration has to a large extent been neglected—with blank nodes
usually being ruled out by assumption—but as shown [3], it is
a significant one.

3. Preliminaries

3.1. Nomenclature

Conventions. For notational economy curly braces will be omit-
ted from singletons in set-theoretic expressions as well as from
arguments of functions if no confusion is likely to ensue, e.g.
P∪ t instead of P∪{t} and f (t) instead of f ({t}). Also, when f is
a function and A a subset of f ’s domain, then f (A) is shorthand
for the set of elements b such that b = f (a) for some a ∈ A.
If f is a function, dom( f ) and ran( f ) are its domain and range
respectively.

RDF graphs. Let I, B and L denote pairwise disjoint infinite
sets of IRIs, blank nodes, and literals respectively. In confor-
mity with the nomenclature of [19], IL abbreviates I ∪ L and T
abbreviates I∪B∪L. T is the set of RDF terms. IRIs will be de-
noted by lower case letters prepended by colons, e.g. :s or :d,
whereas a blank node will have an additional underline in front
of it, e.g. _ :b. An RDF triple (or just ‘triple’) is an element
t ∈ IB × I × IBL. An RDF graph is a finite set of RDF triples.
RDF graphs are denoted by possibly subscripted Gs, and sets
of RDF graphs by G s.

SPARQL queries. Turning now to SPARQL queries, V sym-
bolizes an infinite set of variables disjoint from IBL. Individual
SPARQL variables will be denoted by lower case letters from
the end of the alphabet prepended by question marks, e.g. ?x
and ?z. A SPARQL triple pattern (or just ‘triple pattern’) is
an element ∈ ILV × IV × ILV. We shall let the notation t
do dual service and denote both SPARQL triple patterns and
RDF triples. We are thus deliberately blurring the distinction
between them. This is mathematically convenient, for reasons
that will become clear as we go, and we shall usually rely on
context to disambiguate. A conjunctive SPARQL pattern, sym-
bolized by a possibly subscripted P, is a set of triple patterns.
A conjunctive SPARQL query (or just‘conjunctive query’) is
a pair (W, P) where W ⊆ V and P is a conjunctive SPARQL
pattern.
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Set semantics of conjuctive queries. The set semantics of con-
junctive queries, is defined by a function that interprets a con-
junctive query in an algebra of all sets of solutions. A solution,
in turn, is a partial function µ : V → IBL. Two solutions µi and
µ j are compatible, written µi 
 µ j, if their union is a partial
function. The set of all solutions is denoted Σ. A subset A ⊆ Σ

is an answer set if all solutions have the same domain. We let
µ(t) stand for the result of uniformly substituting RDF terms for
variables in t according to µ. Note that µ(t) is well-defined ir-
respective of whether the domain of µ contains all variables in
t or not: if it does then µ(t) is a triple, if not then µ(t) is a triple
pattern.

A conjunctive SPARQL algebra is a structure 〈2Σ, ./, π〉,
where ./ is a binary operator defined as

Ωi ./ Ω j := {µi ∪ µ j | µi ∈ Ωi, µ j ∈ Ω j, µi 
 µ j}

for Ωi,Ω j ∈ 2Σ, and. The operation π is a function of type
2V × 2Σ 7→ 2Σ defined as:

πW (Ω) : = {µ|(W∩dom(µ)) | µ ∈ Ω}

where µ|X denotes the restriction of µ to X.
A conjunctive query Q := (W, P) is evaluated over a graph

G by an interpretation function JKG that maps queries into the
SPARQL algebra in the following manner:

JtKG := {µ ∈ Σ | dom(µ) = vars(t), µ(t) ∈ G}
JPi. P jKG := JPiKG ./ JP jKG

J(W, P)KG := πW (JPKG)

If Q is a conjunctive query then JQKG will be called an answer
to Q over G. The analysis in the present paper will be restricted
to this fragment of the SPARQL language.

For a set of graphs G , the evaluation JPKG of P is under-
stood to be the federated evaluation of P over G , which is de-
fined to be the union of the results of evaluating P over each
G ∈ G (cf. [3]). In contrast, let m(G ) denote the merge of
the graphs in G , that is, m(G ) is the single graph that results
from taking the union of all elements of G after standardiz-
ing apart blank nodes from different graphs. Then JPKm(G ) is
just the evaluation of P over the single source m(G ). The two
are emphatically not the same. Indeed, the semantics of fed-
erated zero-knowledge query processing is precisely the condi-
tions under which JPKG = JPKm(G ). The left-to-right inclusion
says that the federation process is sound, and the converse in-
clusion says that it is complete.

3.2. Trees

Let A∗ denote the set of strings over the alphabet A := {1, 2}
A tree domain is a subset D of A∗ satisfying the conditions

1. For each k ∈ D, every prefix of k is also in D.

2. For each k ∈ D, k2 ∈ D iff k1 ∈ D.

Every tree domain can be ordered by the prefix ordering � on
binary strings. Supervenient on this ordering we define an eval-

uation tree as a total function Ψ from D to A satisfying the
condition

Ψ(n1) ./ Ψ(n2) = Ψ(n) (1)

The set of evaluation trees will be symbolized by T.
The function Ψ can be viewed as an indexing function on

elements of A , whence pairs (i,Ω) ∈ Ψ can be interpreted as
indexed sets Ωi. We shall usually prefer the latter to the former
notation. The root of a binary operator tree Ψ is the answer set
Ωε . Given a tree Ψ and an index k in dom(Ψ), the subtree rooted
at i, written Ψ/i, is the tree whose domain is the set {m | im ∈
dom(Ψ)} and such that (Ψ/i)(n) = Ψ(in) for all n ∈ dom(Ψ/i).
The set of leaves in Ψ is denoted l(Ψ). The depth of a tree
Ψ is the longest path from the root to a leaf, equivalently it is
the length of the longest index in dom(Ψ). These definitions
ultimately go back to [20]. We extend the notation var to trees
and write var(Ψ) for the set of SPARQL variables that occur in
the domain of some µ in some Ω in l(Ψ).

4. The problem

The general theory of the federated evaluation of conjunc-
tive SPARQL queries was developed in [3] and [21]. The theory
being general means that the it allows arbitrary occurrences of
blank nodes in the data without compromising the soundness or
completeness of query answers. The interested reader should
consult [3] and [21] for the details. In this section we shall be
content to show by example what special problems federation
across blank nodes presents, and to sketch what requirements
this imposes on a sound and complete query processor.

For the purposes of the present paper, the point of this is
to highlight a couple of key properties that we are allowed to
assume for all evaluation trees combining results from multi-
ple execution contexts. Due to the semantics of blank nodes,
these assumptions are valid for federated SPARQL processing
in general. These properties present certain heuristic opportu-
nities that form the basis and governs the interaction between
the reduction operations that are studied in the remainder of the
paper.

4.1. A motivating example

A natural default requirement for a federated SPARQL pro-
cessor is that it should return all the solutions to a query that
is warranted by the union of the RDF graphs that that query is
federated over. For illustration, consider the two RDF graphs in
Figs. 1 and 2 respectively. These graphs encode information re-
garding members of the European Parliament (MEP), as found
in the LinkedEP dataset produced by the Talk of Europe project
[22], a dataset covering plenary debates held as well as bio-
graphical information regarding members of parliament. More
specifically, source A encodes information regarding the MEP
Eva Joly and her political functions, while source B encodes in-
formation regarding MEP Carl Schlyter. From the data, we see
that they represent different national parties but belong to the
same EU political party (Europarty). However, the information
in source A alone is not enough to conclude that Eva Joly is
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associated with a Europarty, as EFA is not typed as such. This
missing piece of information is, however, present in source B.
Thus, when the sources are merged, as shown in Fig. 3, the
political institutions are all appropriately typed. Hence, posing
the query in Lst. 1, asking for the name of the MEPs in the EU
parliament that are politically affiliated with a Europarty (not
all MEPs are), as well as the party name, produces the answers
in Fig. 5.

SELECT ? p e r s o n ? p a r t y WHERE {
? p e r s o n a l p v :MEP.
? p e r s o n l p v : p o l i t i c a l F n ? x .
? x l p v : i n s t i t u t i o n ? p a r t y .
? p a r t y r d f : t y p e l p v : EUParty . }

Listing 1: Get MEP and EU party

Now, if we only evaluate the query in Lst. 1 against each
source separately, for so to take the union of the results, we
get an incomplete set of answers as shown in Fig. 4. In other
words, it is clear that the sum of the whole is more than the
sum of its separate parts. That is, the total amount of informa-
tion contained by the two sources combined, resides not only in
what each of them can contribute separately, but in also in the
combination or join of elements across sources. In other words,
the query cannot simply be executed as a whole against each
source—that is too coarse. It must rather be split up into parts
tailored to capture the cross-site joins.

Unfortunately, there is a complicating factor that blocks any
straightforward realization of this idea, namely the presence of
blank nodes in join positions. More specifically, sources A and
B utilize blank nodes to represent complex attributes in the form
of statements about statements, as recommended by the Seman-
tic Web Best Practices and Deployment Working Group. In
this case, that "X had a political affiliation to institution Y be-
tween dates A and B" is codified using blank nodes. In the
distributed case, such a join, if it is not handled with special
care, will quickly become a drain through which information
will leak. As described in detail in [3], this is due to the fact
that anaphoric reference is lost whenever the same blank node
is processed in two separate execution contexts. According to
the SPARQL 1.1 specification, every distinct query constitutes
a distinct and sealed scope for blank node identifiers, which
means that a blank node from one execution context cannot be
referenced in another. Blank nodes are similar to existential
variables in the sense that they are anaphors within the same
quantificational context only. Now, a blank node that receives
different names in different query execution contexts obviously
cannot be used for cross-site joins, so there it is.

It is worth emphasizing that none of the more straightfor-
ward and better known query-decomposition strategies from the
literature, such as the even decomposition, so called in [21] as
implemented in DARQ [23], and the standard decomposition
as implemented in FedX [13] solve this problem.

Exemplifying, the even decomposition will evaluate each
triple pattern (from the global query, let’s call it) against ev-
ery source that may contain an answer for it (meaning that the
RDF property from the triple pattern in question occurs in that
source). For instance, the even decomposition will evaluate

both of the triple patterns ?person lpv:politicalFn ?x
and ?x lpv:institution ?party from the query in Lst.
1 separately against each of A and B. Collecting the solutions
in separate tables, we have the answer sets in Figs. 6 and 7,
where the identifiers for blank nodes have been given distinct
subscripts c and d to signify that they are not to be treated as
the same names. Now, as these tables do not join, the even dis-
tribution produces no answer to the example query, not even the
ones that derive from the same source. This time it comes down
to the fact that query is split too finely.

Taking stock, these examples can be taken to show the fol-
lowing: If answering a query involves joins on blank nodes,
then the granularity of the decomposition of that query matters
a great deal. If the query is split too finely, then answers from
a single source may be lost due to the loss of join information
linking the partial answers. If on the other hand the query is
split too coarsely, then cross-site joins may be lost.

5. Properties of correct decompositions

Reasoning formally about federated evaluation of conjunc-
tive SPARQL queries requires a minor amendment to the se-
mantical apparatus introduced so far: when different portions
of a query are directed to different SPARQL endpoints they are
also evaluated in different execution contexts. According to the
specification they should therefore not share blank nodes be-
tween them. We need to make sure that this disjointness con-
dition is properly maintained, which is why we introduce a pa-
rameter c in JPKc

G as an explicit representation of a particular
execution context. Mathematically, it is a relabeling function
that ensures that for each execution context blank nodes are
given identifiers that belong uniquely to that context. Solutions
in JPKc

G will accordingly be denoted µc, though the index c may
be omitted when it is clear from context. See [3] for mathemat-
ical details.

Going back to the example from the preceding section, the
partition immediately below gives a decomposition of the query
in Lst. 1 that produces a correct and complete answer.

P1 := {?person lpv:politicalFunction ?x.,

?x lpv:institution ?party.}

P2 := {?person a lpv:MEP.}

P3 := {?party a lpv:EUParty.}

The reason that this decomposition succeeds where the stan-
dard and even decompositions fail is first, that it groups to-
gether those triple patterns that match a join on a blank node
thus ensuring that joins on blank nodes are evaluated in a sin-
gle execution context (P1). Secondly, all other triple patterns
are shipped as singletons which prevents cross-site joins not in-
volving blank nodes from being lost (P2 and P3).

As it happens, there is only one solution µ to the query in
Lst. 1 over the sources in Figs. 1 and 2. The decomposition
P1-P3 corresponds to this solution, meaning that the join of the
respective unions of evaluating each subquery over the source
it is assigned to yields the only correct answer.
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Figure 1: RDF source A
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_:b1 :EE_France :MP_Sweden _:b3

"2014-07-01" lpv:NationalParty "2009-07-14"

:EvaJoly lpv:MEP :CarlSchlyter

"2017-03-31" lpv:EUParty "2014-06-30"

_:b2 :EFA _:b4

rdf:type

l
p
v
:
p
o
l
i
t
i
c
a
l
F
n

l
p
v
:
p
o
l
i
t
i
c
a
l
F
n

rdf:type

lp
v:
en
d

l
p
v
:
e
n
d

lpv:institution

lpv:beginning

l
p
v
:
b
e
g
i
n
n
i
n
g

lpv:inst
itution

rdf:type

rdf
:ty

pe

rdf:type

l
p
v
:
p
o
l
i
t
i
c
a
l
F
n

l
p
v
:
p
o
l
i
t
i
c
a
l
F
n

lpv:institution

lpv
:be

gin
nin

g

lpv:beginning

lpv:end

lp
v:
en
d

Figure 3: The union of sources A and B modulo renaming of blank nodes.

?person ?party
:CarlSchlyter :EFA

Figure 4: Union of answers over A and B

?person ?party
:EvaJoly :EFA

:CarlSchlyter :EFA

Figure 5: Answer over the merge of A and B

?person ?x
:EvaJoly _:b1c

:EvaJoly _:b2c

Figure 6: ?person lpv:politicalFn ?x over A

?x ?party
_:b1d :EE_France
_:b2d :EFA

Figure 7: ?x lpv:institution ?party over A.

In the general case that a query has more than one solution
(‘having a solution’ should here be understood as having an
answer in the merge of the contributing sources) different de-
composition may be required. Indeed, it is not entirely obvious
that there is a decomposition for every solution. The demon-
stration that there is, relies on the concepts of a b-component
and a b-connected set:

Definition 5.1 (b-connectedness). Let G, {a} be RDF graphs,
then

1. {a} is b-connected

2. G ∪ {a} is b-connected if G is b-connected and G and a
share a blank node.

◦

A b-component is a subquery that matches a maximally b-
connected subgraph modulo some solution µ:

Definition 5.2 (b-component). Let µc ∈ JPKc
m(G ) and suppose

Pi ⊆ P. Then Pi is a b-component of P relative to µc iff µc(Pi)
is a maximal b-connected subset of µc(P).

◦

Note that b-connected sets are RDF graphs, whereas b-components
are SPARQL query patterns. Note also that subquery Pi is a b-
component relative to a particular solution µ. We shall say that
µ induces the b-component Pi.

Now, let µc be a solution to P in a graph G and let f (µc, P)
denote the set of b-components of P modulo µc. Then f is a
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function and f (µc, P) partitions P. Indeed f (µc, P) selects the
partition that corresponds to µc.

Theorem 5.1. Let G := {Gi}i∈I be a set of sources of RDF
graphs and let µc ∈ JPKc

m(G ). Put f (µc, P) := P1, . . . , Pk. Then
there is a set {m, . . . , n} ⊆ I such that there is a µ′ ∈ JP1Kcm

Gm
./

. . . ./ JPkKcn
Gn

, for any distinct set of execution contexts cm, . . . , cn,
and µc(P) �� µ′(P).

Proof. This is Corollary 5.5 in [3].

Theorem 5.1 shows that if there is a solution to P in the
merge of the RDF graphs G , then there is an equivalent solu-
tion of form f (µc, P) that can be assembled by federating P over
G . All these solutions are alphabetic variants of each other, ob-
tained by substituting names of blank nodes for names of blank
nodes. Moreover, the completeness theorem of [3] (Theorem
7.1) shows that every solution obtained by federation has this
form, i.e. is f (µc, P) for some µc.

The importance of this is that it allows us to assume that if a
decomposition of a query, and thus by extension an evaluation
tree, produces a solution at all, then it will have the property that
exactly one subquery is evaluated over each RDF graph. Con-
trapositively, if it is not of that form, and the blank nodes are
properly distinguished by execution contexts, then it returns the
empty solution. More specifically, the subqueries in f (µc, P)
will be such that all joins on blank nodes are contained within
them, meaning that blank nodes are never split between execu-
tion contexts. One way of looking at this is to view blank nodes
as indexes into sources: whenever two blank nodes can be iden-
tified they must stem from the same source. Hence, if there is a
legitimate join on a blank node then both arguments to that join
can safely be assumed to be collocated.

For the purposes of formulating information preserving re-
duction operators there is no reason to worry about decomposi-
tions that return empty sets, and so if the conjunctive SPARQL
query being evaluated is (W, P) then any distribution of it will
be assumed to have the following form. See Fig. 8.

./

JPnKcn
Gn

./

. . ../

JP2Kc2
G2

JP1Kc1
G1

Figure 8: The form of distributed evaluation trees.

For easy reference we extrapolate and name a pair of con-
sequences of this demarcation of the set of eligible evaluation
trees:

The separation assumption: None of the leaves in a distributed
evaluation tree share blank nodes, and hence

The idle join assumption: A blank node in join position can
not be, and never needs to be, combined with any solution
from any other partial answer unless they are on the same
path.

6. An abstract characterization of reduction operators

Intuitively a reduction operation, in the sense intended in
the present paper, is an operation that can be applied to inter-
mediate results to make them smaller, but without interfering
with the semantics of the final result of the query. Stated in
terms of evaluation trees, a reduction operator should be appli-
cable to all the nodes of an evaluation tree, it should produce
smaller nodes and it should preserve the semantics of the final
answer up to some plausible notion of equivalence.

Moreover, the outputs of the reduction operator—we shall
call them reduced sets (or, nodes, depending on context)—must
be related in the correct manner. Specifically, root of the re-
duced tree must be generated from the reduction of the leaves
in a process that interleaves the join operation with the reduc-
tion operation in the right manner. Definition 6.1 furnishes a
reduced evaluation tree with the requisite recursive structure.

Definition 6.1 (Reduced evaluation tree). Let o be an operation
of type o : T × A∗ ×A −→ A . In practice, the first two argu-
ments will always be fixed and o will consequently be treated as
a one-place operation oΨ

i . The reduct Ψo of an evaluation tree
Ψ, is a tree (not necessarily an evaluation tree) derived from Ψ
in the following manner:

Ωi
o =d f


oΨ

i (Ωi) if Ωi is a leaf

oΨ
i (Ω j

o ./ Ωk
o) if Ωi = Ω j ./ Ωk

◦

Some comments on this definition are perhaps called for:
the structure of Ψo does not merely mirror the join-structure
of Ψ. Rather, each intermediate node in Ψo is generated by
first computing the o-reduction of its left and right sub-trees,
then joining the results, and then applying the o operation to
the result of that. Consequently, a reduced evaluation tree is not
in general itself an evaluation tree (though it might be).

The raison d’être behind this application pattern is mini-
mality: we wish to make intermediate results as small as they
can be by removing all information from a node that is redun-
dant at that point in the evaluation tree. As it turns out, the
join operator sometimes introduces new redundancies in cases
where there are none in the join arguments. An example of
this, studied more closely in section 7.1, is the operation of re-
moving columns from an intermediate result once they are no
longer required for joins: suppose for instance that each of two
leaves share a variable ?x. Then no reduction operator should,
on pain of unsoundness, be allowed to remove that column be-
fore the join has been performed. But, ?x may not be involved
in joins beyond this point, in which case it is safe to “garbage
collect” it immediately after, calling for a second application of
the operation in question.
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This application pattern is also the reason why a reduction
operator takes three and not two arguments: a tree, and index
and an answer set. When a reduction operator is applied in an
iterated fashion to the reduction of the left and right subtrees
of a node i in a tree Ψ, then it is not applied to Ωi ∈ Ψ but to
a smaller (in the sense of Definition 6.2) set computed from it.
The second case of Definition 6.1 stipulates that this computa-
tion is nevertheless determined by the index i and the original
tree Ψ. We shall usually suppress the reference to the tree Ψ

when it can be inferred from context, and write just oi.

Turning now to the question of what conditions it is rea-
sonable to place on such an operator if it is to be apt to call
it a reduction operator, the following two seem to have some
intuitive traction: a reduction operator should reduce the size
of intermediate results, not necessarily in all cases, but results
should at least never grow bigger. Secondly, a reduction oper-
ator should preserve the semantics of the final result of evalu-
ation up to a suitable notion of equivalence. Given Definition
6.1 what this must be taken to mean is that if a size-reducing
operator is applied to a tree Ψ in the iterated manner outlined
by that definition, then the final result extracted (by projection,
that is) from the root of the reduct Ψo should be the same as
that extracted from the root of Ψ up to some as yet unspecified
notion of equivalence.

Definition 6.2 (Reduction operation). Let ≡ be an equivalence
relation on 2Σ. A function o : T× A∗ ×A −→ A is a reduction
operation wrt. ≡ if it satisfies the following conditions wrt. any
tree Ψ and any set of SPARQL variables W:

Result equivalence: πW (Ωε) ≡ πW (Ωε
o)

Shrinking: s(Ωi
o) ≤ s(Ωi) for any i ∈ dom(Ψ), where

s(Ω) =d f


|Ω| × |dom(µ)| if Ω , ∅ and µ ∈ Ω

s(Ω) = 0 otherwise.

◦

The shrinking property is always entirely obvious and we usu-
ally only mention it in passing.

7. Removing superfluous columns

As illustrated by Example 7.1, the variables in a SPARQL
query can be classified into three groups: 1) join variables, 2)
project variables and 3) pure existence requirements.

Example 7.1. Consider the query

SELECT ?x ?y WHERE {?x :p1 ?y. ?x :p2 ?z.}

Its graph pattern is illustrated in Fig. 9. The variables ?x and
?y are obviously project variables, but only ?x is a join variable.
The variable ?z, on the other hand, is neither a project variable
nor a join variable. It is merely a condition that requires that
there be a :p2 edge from the value of ?x to some other entity in
the data.

?y

?x

?z

:p1

:p2

Figure 9: The different types of query variables: blue = project, orange = pure
existence requirement, underlined=join.

An existence requirement’s being pure should be taken to
mean that it is not also a project variable or a join variable—
after all, all variables express existence requirements. In other
words, the set of pure existence requirements is disjoint from
the other two. The latter two types may overlap though, since a
join variable may be projected, but they are in general distinct.

The utility of this threefold classification consists in the fact
that it expresses the different functions a variable may fulfill in
the course of evaluating the query. This in turn provides a basis
for analyzing the points at which the information that is bound
to a variable is no longer necessary for computing the answer.

A pure existence condition expires, one might say, the mo-
ment it has been applied, whereas a join variable, if it not also a
project variable, expires after all the partial results in which that
variable occurs have been combined. A project variable never
expires. Expiration points, whenever they exist, can be used to
reduce the size of intermediate result.

Ωε

?x ?y ?z ?a
:s :s :t :d
:s _:b1 :t :e

Ω2

?x ?z
:s :t

Ω1

?x ?y ?a
:s :s :d
:s _:b1 :e

Ω12

?y ?a
:s :d

_:b1 :e

Ω11

?x ?a
:s :d
:s :e

Figure 10: Live and expired variables

Consider the evaluation tree in Fig. 10. The conventions
are as follows: the project column is marked in blue. A yellow
cell indicates a point at which a variable is live, meaning that it
is semantically irredundant at that point. White cells mark idle
positions, which are all positions occupied by a variable after it
has expired.

For instance: variable ?a is live at Ω11 and Ω12 since the
two sets join on this variable. It expires at Ω1 after the compu-
tation of Ω11 ./ Ω12 since it does not occur in any other branch
of the tree. Variable ?x, on the other hand, is live at Ω11 and
Ω12 like ?a, but it does not expire at Ω1 since Ω2 contains it too.
The variable ?z is a pure existence requirement. It is not used
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for joins, nor is it projected. Its only purpose is to constrain
the generation of solutions by expressing a condition that eli-
gible solutions must satisfy. It therefore never occupies a live
position, which means that as soon as it has been applied it is al-
ready redundant. Therefore, the corresponding columns can be
removed from all intermediate results with impunity. Finally,
variable ?y is a project variable. Since project variables rep-
resent bindings that are explicitly requested by the query, it is
never superfluous and never expires.

Moving towards a formalization of these intuitive remarks,
the concept of a live join variable is given by Definition 7.1:

Definition 7.1 (Live join variables). Let Ψ be an evaluation tree
and let Ω j be any node in Ψ. Then the live join variables at j in
Ψ is defined as:

J(Ψ, j) = dom(Ω j) ∩ X

where X =
⋃

i dom(Ωi) for every i such that i and j are ≤-
incomparable.

◦

Applied to Fig. 10, Definition 7.1 outputs the yellow cells
that are join variables. The remaining yellow cells are project
variables. Hence,

Definition 7.2 (Live variables). VΨ,W
i =d f (W ∩ dom(Ωi)) ∪

J(Ψ, i). ◦

The superscripts on V will be omitted when clear from con-
text. Note that pure selection constraints such as ?z in Fig. 10
are excluded by this definition, as they should be.

In general, an operation that removes columns from an an-
swer set, henceforth called a truncation operation, can be de-
fined in terms of projection.

Definition 7.3 (Truncation). A truncation operation is a func-
tion θ : A −→ A satisfying the condition that θ(Ω) = πV (Ω)
for some set of variables V . ◦

Definition 7.2 of live variables determines a natural trunca-
tion operation.

Definition 7.4 (Live variable truncation). Let Ψ be an evalua-
tion and Ωi ∈ Ψ and W ⊆ dom(Ωε). Then τΨ

i =d f πVi .
◦

The reader should keep in mind that the operation τΨ
i , since

it is defined by Vi which in turn abbreviates VΨ,W
i , is really

parameterized by the project variables W. Mathematical rigor
would require this to be explicit in the notation. However, since
W is usually clear from context, or not essential to the argu-
ment, it will henceforth be left implicit.

Example 7.2 (τ is not distributive). Consider the variable ?a in
Ω1 = Ω11 ./ Ω12 in Fig. 10: it is in the domain of πV11 (Ω11) ./
πV12 (Ω12), yet it is not in the domain of πV1 (Ω1), since ?a expires
at 1. This goes to show that that τ is not distributive. That
is, there are in general evaluation trees with intermediate sets
Ωi = Ω j ./ Ωk such that:

τΨ
j (Ω j) ./ τΨ

k (Ωk) , τΨ
i (Ω j ./ Ωk)

In these cases, the right hand side of the inequation always con-
tains fewer variables than the left.

There are different ways to view this failure of distributiv-
ity. On an abstract level, it means that Ψτ is not in general
an evaluation tree as we have defined that latter concept. It
is not an evaluation tree because τ-reduction, as stipulated by
the second case of Definition 6.1, may compress the informa-
tion contained in a join into a smaller, but from a logical point
of view equally information-rich package. From an essentially
equivalent bottom-up perspective, one might say rather, that the
failure of distributivity reflects the fact that joins can introduce
redundancies: variables that are live in each of the join argu-
ments expire in the join itself.

No matter how one prefers to think about it, the property
explains why the full reduction of an evaluation tree needs to
be conceptualized as in Definition 6.1 with an iteration in the
recursive case.

It remains to check that everything aligns correctly, i.e. that
the definition of τ and the procedure stipulated by Definition
6.1 combine to form a reduced tree with a root that is the same
as the root of the original tree when truncated by the project
variables. Lemma 7.1 and Lemma 7.2 give two jointly sufficient
conditions for this.

Lemma 7.1 (Stability). Let Ψ be an evaluation tree and Ωi =

Ω j ./ Ωk ∈ Ψ. We have πVi (πV j (Ω
j) ./ πVk (Ω

k)) = πVi (Ω
j ./ Ωk)

Proof. Let µ ∈ πVi (πV j (Ω
j) ./ πVk (Ω

k)). Then µ = πVi (πV j (µ j) ∪
πVk (µk)) for some µ j and µk. Projection distributes over set
union so πV j∪Vk (µ j ∪ µk) = πV j∪Vk (µ j) ∪ πV j∪Vk (µk). It is imme-
diate from the Definition 7.1 of live join variables (V j ∪ Vk) ∩
dom(Ω j) = V j so πV j∪Vk (µ j) = πV j (µ j) and similarly for k, and
hence πV j∪Vk (µ j∪µk) = πV j (µ j)∪πVk (µk). It therefore suffices to
show that πV j∪Vk (µ j ∪ µk) = πVi (πV j∪Vk (µ j ∪ µk)), which in turn
only requires J(i) ⊆ J( j)∪J(k). But it is an easy consequence of
Definition 7.1 that the set of live joins is antitione in the height
of a node Ωi ∈ Ψ. Therefore, since i is above j and k it follows
that µ = πVi (µ j ∪ µk). The converse direction is similar, so the
proof is complete.

Lemma 7.2. Let Ψ be a tree. Then for any Ωi ∈ Ψ we have
Ωi
τ = πVi (Ω

i).

Proof. Proof proceeds by induction on the depth of Ψ. For the
base case, suppose d(Ψ) = 0. Then Ψ contains only one node
Ωε , and that node is a leaf. By the first case of Definition 6.1
we have that Ωε

τ = τΨ
ε (Ωε) = πVε (Ω

ε).
For the induction step, suppose that Ωi = Ω j ./ Ωk, and

assume as induction hypothesis that Ω
j
τ = πV j (Ω

j) and Ωk
τ =

πVk (Ω
k). We want to show that Ωi

τ = πVi (Ω
j ./ Ωk). We have
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Ωi
τ = τΨ

i (Ω j
τ ./ Ωk

τ) df. Ωτ

= τΨ
i (πV j (Ω

j) ./ πVk (Ω
k)) by ind. hyp.

= πVi (πV j (Ω
j) ./ πVk (Ω

k)) by def. of τ

= πVi (Ω
j ./ Ωk) by stability

The following corollary drips off immediately:

Corollary 7.3. For any evaluation tree Ψ and any W ⊆ dom(Ωε)
we have

πW (Ωε) = πW (Ωε
τ)

Proof. Follows immediately from Lemma 7.2 and the fact that
πVε = πW is an idempotent operation.

In other words, τ satisfies the condition of result set equiva-
lence, and since it obviously produces smaller intermediate re-
sults, it is a reduction operator wrt. equality in accordance with
Definition 6.2.

Corollary 7.4. τ is a reduction operation.

Turning now to the size of intermediate results in Ψτ, are
the intermediate results as small as they can be without altering
the final result? As it turns out, not necessarily. For a coun-
terexample, consider the tree in Fig. 11. Assume that W is the
entire domain of Ωε . Then all variables in the leaves are live at
those indices, from which it follows that the tree is τ-reduced.
Nevertheless, it is easy to see that in this particular tree one can
remove the column ?z, as indicated by the shaded column, from
Ω1 without repercussions in the root—despite the fact that ?z is
live at that point, and so will not be removed by τ.

Ωε

?x ?y ?z ?a
:u :v :w :a

Ω2

?z ?a
:w :a

Ω1

?x ?y ?z
:u :v :w

Figure 11: The possibility of reduction beyond the τ-threshold

However, it seems clear that this example, in some as yet
unspecified sense, exploits the distribution of data that is spe-
cific to this particular tree. Another tree with the same join-
structure and distribution of variables, may behave rather dif-
ferently under the same operator.

Consider for instance the tree in Fig. 12. It is structurally
similar to that of Fig. 11. If the ?z column (which occupies
the same position in this tree as in that of Fig. 11) is removed
from this tree, indicated by the shaded column tagged out,
then three solution are added to ωε marked by the shaded rows

in

Ωε

?x ?y ?z ?a
:u :v :w :a
:s :t :m :n
:u :v :m :n
:s :t :w :a

Ω2

?z ?a
:w :a
:m :n

Ω1

?x ?y ?z
:u :v :w
:s :t :p

out

Figure 12: Same operation, non-equal root.

tagged in. These additional rows are incorrect or unsound so-
lutions. Therefore, the reason why ?z (i.e. its absence) does
not interfere with ωε in Fig. 11 must be due to the particular
distribution of values in that tree.

It seems reasonable to rule out such cases, since they require
the data in different branches of the tree to be scanned and com-
pared. In a federated setting this involves shipping data from
one machine to another. But of course this defeats the purpose
of reducing intermediate results to begin with. It seems reason-
able, therefore, to require a truncation operator to be structural
in the sense that it is not sensitive to the distribution of data in
the tree, but only to its join-order and distribution of variables.
Formally:

Definition 7.5 (Structural truncation operation). A truncation
operation θ is structural iff it holds for any pair of evaluation
trees Ψ and Ψ′ that whenever both of the conditions below are
satisfied

1. dom(Ψ) and dom(Ψ′) are isomorphic under �

2. dom(Ψ(i)) = dom(Ψ′(i))

then dom(θ(Ψ(i))) = dom(θ(Ψ′(i))). Any pair of trees that satis-
fies condition (1) and (2) will be said to be structurally similar.

◦

It is obvious that τ is structural in this sense.
Definition 7.5 suffices for a partial minimality result for

column-reduced intermediate results: call a tree Ψ conjunct if
every join in it is on one or more shared variables. That is, a
tree is conjunct if it does not compute cartesian products. Then:

Theorem 7.5 (Column minimality). Let θ any structural trun-
cation operation and let Ψ be a conjunct evaluation tree. Then
if for any node Ωk ∈ Ψ it holds that dom(Ωk

θ) ⊂ dom(Ωk
τ) for

some k ∈ dom(Ψ), then θ does not satisfy result equality.

Proof. It will be convenient to have a shorthand for talking
about the properties of the relevant classes of answer sets: Hence-
forth a

(
?y7→ :c, :v

:u

)
-set is an answer set with two solutions µ :v and

µ :u corresponding to each row of the expression
(

?y 7→ :c, :v
:u

)
. Each
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row indicates a default value :v and possibly a binding e.g.
?y 7→ :c. For instance the upper row of

(
?y7→ :c, :v

:u

)
denotes a solu-

tion µ :v that maps all variables in its domain to the same RDF
constant :v, except ?y which is mapped to the RDF constant :c.
Similarly

(
:v
:u

)
denotes an answer set in which µ :v maps all of its

variables to :v whereas µ :u maps the same variables to :u. Fi-
nally,

(
−

:u

)
denotes an answer set with only one solution µ :u that

maps every variable to :u.
Under the general assumption that the answer sets in ques-

tions are not cartesian products, i.e. that they share one or more
variables, the following general join patterns are all easily veri-
fied:

1. the join of
(

?y 7→ :c, :v
:u

)
-sets is a

(
?y7→ :c, :v

:u

)
-set.

2. the join of a
(

?y7→ :c, :v
:u

)
-set and a

(
:v
:u

)
-set is a

(
?y7→ :c, :v

:u

)
-set if

?y is not shared.

3. the join of a
(

?y 7→ :c, :v
:u

)
-set and a

(
−

:u

)
-set is a

(
−

:u

)
-set.

4. the join of a
(

?y7→ :c1, :v
:u

)
-set and a

(
?y7→ :c2, :v

:u

)
-set is a

(
−

:u

)
-set

whenever :c1 , :c2.

5. the join of a
(
−

:u

)
-set and a

(
−

:u

)
-set is a

(
−

:u

)
-set.

6. the join of a
(

:v
:u

)
-set and a

(
:v
:u

)
-set is a

(
:v
:u

)
-set

?x ?y ?z ?u
:u :u :u :u

?y ?u
:c2 :v
:u :u

?x ?y ?z
:v :c1 :v
:u :u :u

Figure 13:
(
?y7→ :c1 , :v

:u

)
./

(
?y7→ :c2 , :v

:u

)
=

(
−

:u

)
whenever :c1 , :c2.

?x ?y ?z ?u
:u :u :u :u

?y ?u
:u :u

?x ?y ?z
:v :c :v
:u :u :u

Figure 14:
(
?y7→ :c, :v

:u

)
./

(
−

:u

)
=

(
−

:u

)
.

Figs. 13 and 14 illustrate the join patterns in item 4 and 3
respectively.

Turning now to the proof proper, suppose that there is a
structural truncation operator θ that yields smaller intermediate
results than τ. That is, we suppose there is an evaluation tree
Ψ with Ωk ∈ Ψ and ?y ∈ dom(Ωk

τ) \ dom(Ωk
θ) for a structural

truncation operation θ.
We need to show on the basis of this assumption that there

exists an evaluation tree Ψ∗ with the property that Ψ∗ and Ψ∗θ
yield different result sets modulo the stipulated projection vari-
ables W. This suffices to show that θ does not satisfy result set
equivalence. The proof strategy is to construct a new tree Ψ∗

from Ψ that is populated with data in such a way that the final
result Ωε

θ of Ψθ is not equal to the final result Ωε
∗θ of Ψ∗θ.

Let n be the index of the lowest join on the variable ?y above
k in Ψτ, n and k are not necessarily different. That n exists
follows from the assumption that ?y ∈ dom(Ωk

τ), which, since
Ωk
τ = πVk (Ω

k) by Lemma 7.2 means that ?y is live at k and hence
used in a join above k. The tree Ψ∗ is constructed as follows.

i) dom(Ψ∗) = dom(Ψτ)

ii) for every leaf Ωnm ∈ Ψτ/n1 let Ωnm
∗ ∈ Ψ∗ be a

(
?y 7→ :cn1, :v

:u

)
-

set if ?y ∈ Ωnm
τ and a

(
:v
:u

)
-set otherwise—in both cases

with the same domain as Ωnm
τ .

iii) every leaf in Ωnm ∈ Ψτ/n2 determines a leaf in Ψ∗ in a
similar fashion to (ii), except that the binding is ?y 7→ :cn2.

iv) for all other leaves in Ωi ∈ Ψτ, Ωi
∗ is a

(
?y 7→ :cn2, :v

:u

)
-set if

Ωk
τ ∈ Ψτ/n2 and a

(
?y7→ :cn1, :v

:u

)
-set otherwise.

Note that this construction ensures that Ψ and Ψ∗ are struc-
turally similar.

The following two observations are almost immediate: A)
the root of Ψ∗/n1 is a

(
?y 7→ :cn1, :v

:u

)
-set. This follows from:

• the fact that all leaves in the subtree rooted at n1 are either(
?y7→ :cn1, :v

:u

)
-sets or

(
:v
:u

)
-sets by clause ii) of the construction

• join patterns 1 and 2 above, and

• the assumption that Ψ and hence Ψ∗ is a conjunct tree

B) The root of Ψ∗/n2 is a
(

?y 7→ :cn2, :v
:u

)
-set for the same reason

as A) with the appeal to ii) replaced by an appeal to iii).
Now, from A) and B) it follows in turn that the root of Ψ∗/n

is a
(
−

:u

)
-set, by one appeal to join pattern 4. Thus, since

(
−

:u

)
-sets

act as zeros for conjunct answer sets, by list item 3 and 5,
(
−

:u

)
propagates to the top of Ψ∗ making Ωε

∗ a
(
−

:u

)
-set too. Since τ is

a reduction operation we have that Ωε
∗θ is a

(
−

:u

)
-set, so the proof

is now reduced to showing that Ωε
∗θ is not a

(
−

:u

)
-set.

The trees Ψ∗ and Ψ are structurally similar by construction.
By the main supposition of the theorem ?y < dom(Ωk

θ). But θ is
structural so dom(Ωk

θ) = dom(Ωk
∗θ) and hence ?y < dom(Ωk

∗θ).
Appealing to structure once more we have that Ωn

∗ is the lowest
join on ?y above k in Ψ∗θ, which means that ?y once it is removed
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from Ωk
∗θ does not occur anywhere between k and n in Ψ∗θ, in

particular it does not occur in Ωn1
∗θ . It follows that Ωn1

∗θ is a
(

:v
:u

)
-

set.
Now, depending on whether or not ?y is in the domain of

Ψ∗θ/n2 (we are not allowed to assume that θ removes ?y only at
index k) Ωn2

∗θ is either a
(

?y7→ :cn2, :v
:u

)
-set or a

(
:v
:u

)
-set. In either case,

if Ωn
∗θ is the root of Ψ∗θ then we are done. This follows from the

fact that the root of Ψ∗ is a
(
−

:u

)
-set, and as such cannot be made

equal to a
(

:v
:u

)
-set by projection onto any set of variables W. If,

on the other hand, Ωn
∗θ is not the root of Ψ∗θ, then it has a sibling

Ωm
∗θ. By (iv) above, all leaves under m in Ψ∗ are

(
?y7→ :cn2, :v

:u

)
-sets,

so depending on whether or not ?y is in both of Ωm1
∗θ and Ωm2

∗θ

(again we are not allowed to assume that θ removes ?y only at
index k) Ωm2

∗θ is either a
(

?y 7→ :cn2, :v
:u

)
-set or a

(
:v
:u

)
-set. By list items

2 and 6 above, a
(

:v
:u

)
-set acts as a unit. Hence, the property of

being either a
(

?y 7→ :cn2, :v
:u

)
-set or a

(
:v
:u

)
-set propagates to the root

of Ψ∗θ, yielding the desired conclusion that θ does not preserve
result equality. The essence of this argument is captured by
Figs. 15 and 16 which schematize the effect that θ’s omission
of the join variable ?y in Ψ∗ has on the final result of Ψ∗θ on a
tree in the the case that Ψ∗ is of this particular form.(

−

:u

)

(
?y 7→ :c2, :v

:u

)
incompatibility on ?y blocks row 1(

−

:u

)

(
?y 7→ :c2, :v

:u

)(
?y7→ :c1, :v

:u

)
Figure 15: A sample tree Ψ∗

(
?y7→ :c2, :v

:u

)

(
?y7→ :c2, :v

:u

)
no incompatibility on ?y(

?y 7→ :c2, :v
:u

)

(
?y 7→ :c2, :v

:u

)
?y removed(

:v
:u

)
Figure 16: The tree Ψ∗θ

It remains to prove the case where ?y ∈ W but ?y is not
a join variable. But this case is trivial since it implies that ?y
occurs in just one leaf, so once it is removed it will not reappear
higher up in the tree. Therefore, there are no bindings for ?y in
πW (Ωε

∗θ) making it different from πW (Ωε
∗).

Taking stock, the initial question about the size of interme-
diate results in Ψτ has been partially answered: if Ψ is conjunct,
then the intermediate results in Ψτ are as small as any structural
operation can make them. Whether the restriction to conjunct
trees can be removed is not clear at the time of writing, and is
left as an open question.

Excursus. Some connections to related work. The general idea
of removing columns in intermediate results for certain pur-
poses and operations is not one we claim originality for. Similar
ideas have a long pedigree in query optimization. The history
of the topic is rather tortuous, and the web of interconnections
too intricate to do it justice here. Suffice it for present purposes
to make a couple of observations.

The semijoin strategy deserves mention since it was de-
signed for reducing the number of columns shipping overhead
in the case where data is distributed among different sites. The
use of semijoins for distributed databases was first introduced
in [24] and [25]. Here, we explain the said strategy in terms of
the nomenclature and examples of the present paper: Applied
to the intermediate nodes Ω1 and Ω2 in Fig. 10 the semijoin
strategy is (cf. [26, p. 856]):

1. compute m := πdom(Ω1)∩dom(Ω2)(Ω1) at node 1

2. ship m from node 1 to node 2

3. compute n := Ω2 ./ s at node 2

4. ship n from node 2 to node 1

5. compute Ω1 ./ n at node 1. This is the same as Ω1 ./ Ω2

The third step yields an intermediate result that is the same as
Ω2 with the column corresponding to the pure existence con-
straint ?z removed. To remove ?z is also what τ does, so the
semijoin strategy and τ agree on the redundancy of ?z.

However the differences are fairly obvious. First, as wit-
nessed by step 5 above, the semijoin strategy passes the result
of the join up the tree in its entirety, no columns are actually
removed. Truncation, in contrast, deletes a column from its ex-
piration point onwards.

More substantially, the two strategies do not have the same
operational semantics. The semijoin strategy has a local scope
that looks only at the arguments being joined, whereas trunca-
tion has a global scope that also considers occurrences of vari-
ables in other branches of the tree.

Although, the semijoin procedure and the τ operation agree
on the superfluousness of ?z in Ω2 in 10, the semijoin strategy
looks only at Ω1 and Ω2 to determine this, whereas the trunca-
tion operator takes into considerations all other positions in the
tree. This difference becomes clearly visible when we elaborate
on the example by having ?z occur in another branch further up,
as in Fig. 17. In this tree ?z is a live variable by our definition,
whereas it is still idle in the semi-join strategy at that point. In-
cidentally, this example also goes to show that the concept of a
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∅

Ω2

?z
:n

Ω1

?x ?y ?z ?a
:s :s :t :d
:s _:b1 :t :e

Ω12

?x ?z
:s :t

Ω11

?x ?y ?a
:s :s :d
:s _:b1 :e
:s :b1 :e
:b2 :b1 :e

Ω12

?y ?a
:s :d

_:b1 :e

Ω111

?x ?a
:s :d
:s :e

Figure 17: Semi-joins compared with live variables

pure existence requirement—?z is a pure existence requirement
in Fig. 10—is global in the same sense as live variables. It
therefore differs from semi-joins for the same reason.

The truncation operator τ is rather more closely related to
projection pushing as developed in (among others) [27, 28, 29].
The idea behind this strategy is to "push" projections as far
down the evaluation tree as possible. This generally reduces
the size of intermediate results [30]. The process must of course
preserve join variables on its way down lest constraints on the
combination of intermediate results be violated. Projection push-
ing is therefore sometimes defined recursively, starting from an
initial set of projection variables and the root of a tree, and then
gradually expanding the set of variables as it is pushed to in-
clude the necessary joins at each level. One such recursive for-
mulation appears in [6] in the context of RDF and SPARQL. It
takes the form of a set of rewriting rules for distributing projec-
tion expressions over joins. The PJPush rule reads as follows
(adapted to the present nomenclature):

πW (Ωi ./ Ω j) = πW (πW′ (Ωi) ./ πW′ (Ω j)) (2)

where W ′ is defined as W∪(var(Ωi)∩var(Ω j). It is easy to check
that when W is passed from the top of the tree and down, then
this rule computes exactly the variables that are live according
to Definition 7.2.

When in the present paper we have opted for a non-recursive

operator definition, it is for two related reasons: first it allows
us to display projection pushing as a particular instance of an
abstract pattern shared by all reduction operations. Secondly,
this shared abstract stratum allows the interaction between re-
duction operators to be studied. It is a question of forming new
and complex reduction operations by composition of elemen-
tary ones. To repeat from the introduction, one of the main
findings of the present paper is that when row-reduction and
column-reduction operations are made to act in consort—and
are applied in the right order—they reduce intermediate results
beyond the threshold of the row operation taken in isolation.
That is, the reduct of an answer set under a certain complex op-
eration will contain fewer rows than the reduct of the same set
under the row operation that is a factor of the complex one. The
demonstration of this requires a uniform formalization.

8. Removing rows with blank nodes in join position

Recall the idle join assumption from section 5: a blank node
in join position can not be, and never needs to be, combined
with any solution from any other partial answer unless they are
on the same path. By the completeness result of [3], this is true
in general for any federated evaluation tree that directs different
portions of a query to different sites.

There is an obvious heuristic opportunity in this: for any
solution in any intermediate result, if it has a blank node in
join position, then it is superfluous. This is the simple idea
developed in the present section. We show that the operation
taking an answer set to a smaller one where the mentioned rows
are removed is a reduction operation in the sense of Section 6.

Definition 8.1. Let Ψ be an evaluation tree, i ∈ dom(Ψ), and
let Ω be any answer set. Then

σΨ
i (Ω) =d f {µ ∈ Ω : ∀?x ∈ J(Ψ, i) ∩ dom(µ)→ µ(?x) < B}

◦

In words, given an evaluation tree Ψ and a node index i,
σΨ

i (Ω) computes the subset of Ω where all elements have con-
crete values for the join variables that are live at point i in the
evaluation tree.

Example 8.1. Consider the evaluation tree in Fig. 18. The live
join positions have been marked in yellow. Fig. 19 shows the
result of applying the operation σ to nodes in the tree with the
corresponding index. All changes flow from removing the sec-
ond row from Ω11. This row has a blank node for the variable
?x, and ?x is a live join at this point. It follows that the row in
question is not compatible with any other solution elsewhere in
the tree, and therefore that it is semantically redundant. Conse-
quently, removing it does not change the semantics of the final
result.

We will show that σ is a reduction operation wrt. equal-
ity. Obviously σ reduces the size of intermediate results, so
we move on from shrinking to result-equivalence. We begin by
stating an obvious, but important property regarding the sharing
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Ωε

?x ?y ?z
:s :s :t
:s _:b1 :t

Ω2

?x ?z
:s :t

Ω1

?x ?y
:s :s

_:b2 :s
:s _:b1

_:b2 _:b1

Ω12

?y
:s

_:b1

Ω11

?x
:s

_:b2

Figure 18: An evaluation tree.

σε(Ωε)
?x ?y ?z
:s :s :t
:s _:b1 :t

σ2(Ω2)
?x ?z
:s :t

σ1(Ω1)
?x ?y
:s :s
:s _:b1

σ12(Ω12)
?y
:s

_:b1

σ11(Ω11)
?x
:s

Figure 19: the σ-reduction of Fig. 18.

of blank nodes in intermediate results in a distributed evaluation
tree. This is the disjointness property for blank nodes that was
alluded to in Section 5:

Lemma 8.1. If Ω j,Ωk ∈ Ψ, j � k and j � k, then ran(Ω j) ∩
ran(Ωk) ∩ B = ∅

Proof. For contradiction, assume b ∈ ran(Ωm) ∩ ran(Ωn) ∩ B.
Since for any pair of leaves Ωm,Ωn ∈ l(Ψ) where m , n then
ran(Ωm) ∩ ran(Ωn) ∩ B = ∅, it must be that there is a leaf Ωi ∈

l(Ψ) s.t. j � i and k � i. But then j and k are both string prefixes
of i, hence it must be that either j � k or j � k, either way a
contradiction.

The lemma says that no sibling branches share blank nodes,
a direct consequence of leaf nodes not sharing blank nodes and
the tree-structure. Contrapositively, two intermediate results
share blank nodes only if they both lie on the same branch in
the tree.

Returning focus to σ, Lemma 8.2 establishes that applying
σΨ

i to the node Ωi ∈ Ψ for which it was defined from, produces
the node Ωi

σ in the reduced tree Ψσ—it is analogous to Lemma
7.2.

Lemma 8.2. Let Ψ be a tree. Then for any Ωi ∈ Ψ we have

Ωi
σ = σΨ

i (Ωi)

Proof. Proof proceeds by induction on the depth of Ψ.

Base case: d(Ψ) = 0. Then Ψ contains only one node Ωε , and
that node is a leaf. By the first case of Definition 6.1 of a re-
duced tree we have that Ωε

σ = σΨ
ε (Ωε).

Induction step: d(Ψ) > 0. Suppose that Ωi = Ω j ./ Ωk. We
need to show that (Ω j ./ Ωk)σ = σΨ

i (Ω j ./ Ωk). By the second
case of Definition 6.1 we have that (Ω j ./ Ωk)σ = σΨ

i (Ω j
σ ./

Ωk
σ) so it suffices to show that σΨ

i (Ω j ./ Ωk) = σΨ
i (Ω j

σ ./ Ωk
σ).

Assume as induction hypothesis (IH) that Ω
j
σ = σΨ

j (Ω j) and
Ωk
σ = σΨ

k (Ωk). The proof then reduces to showing σΨ
i (Ω j ./

Ωk) = σΨ
i (σΨ

j (Ω j) ./ σΨ
k (Ωk)) We prove each inclusion sepa-

rately.

(⇒). Suppose that µ ∈ σΨ
i (Ω j ./ Ωk) for µ = µ j ∪ µk such

that µ j ∈ Ω j and µk ∈ Ωk. Assume for contradiction that µ <
σΨ

i (σΨ
j (Ω j) ./ σΨ

k (Ωk)). Since σΨ
j (Ω j) ./ σΨ

k (Ωk) ⊆ Ω j ./ Ωk

and, by the first assumption, µ ∈ Ω j ./ Ωk, it follows by the
second assumption that µ j ∪ µk < σ

Ψ
j (Ω j) ./ σΨ

k (Ωk). Hence,
by the definition of ./ either µ j < σ

Ψ
j (Ω j) or µk < σ

Ψ
k (Ωk). The

two cases are similar, so assume wlog. that the former is the
case. Then since µ j ∈ Ω j it follows by Definition 8.1 that there
is an ?x ∈ dom(Ω j) such that ?x ∈ J(Ψ, j) and µ j(?x) ∈ B. Now,
since ?x ∈ J(Ψ, j)\J(Ψ, i) , it follows that ?x expires at i whence
?x ∈ J(Ψ, k). Since µ j � µk and ?x ∈ dom(µ j) ∩ dom(µk) it
must be that (µ j ∪ µk)(?x) = µ j(?x) = µk(?x). Therefore, since
?x ∈ J(Ψ, j)∪ J(Ψ, k) and µ j∪µk < σ

Ψ
j (Ω j) ./ σΨ

k (Ωk), we may
infer that µ j∪µk(?x) = µ j(?x) = µk(?x) ∈ B. But this contradicts
Lemma 8.1 which says that ran(Ω j) ∩ ran(Ωk) ∩ B = ∅.

(⇐). This follows directly from the fact thatσΨ
j (Ω j) ./ σΨ

k (Ωk) ⊆
Ω j ./ Ωk and the monotony of σΨ

i .

Proving result-set equivalence in the sense of Definition 6.2
is now fairly straightforward. Here as in the previous section
result-set equivalence is actually result set equality.

Theorem 8.3. For any evaluation tree Ψ and any W ⊆ dom(Ωε)

πW (Ωε) = πW (Ωε
σ)
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Proof. By Lemma 8.2 we have Ωε
σ = σΨ

ε (Ωε), so it suffices to
show that Ωε = σΨ

ε (Ωε) because then Ωε = Ωε
σ so πW (Ωε) =

πW (Ωε
σ) as desired. Now, Ωε is the root node of Ψ, so J(Ψ, ε) =

dom(Ωε)∩ (Ψ\ (Ψ/ε)) = dom(Ωε)∩ (Ψ\Ψ) = dom(Ωε)∩∅ = ∅.
It follows that the condition ∀ ?x ∈ J(Ψ, ε) → µ(?x) < B is
vacuously true for any µ ∈ Ωε so Ωε ⊆ σΨ

ε (Ωε). Since the
converse inclusion holds trivially, this completes the proof.

Again, it is entirely evident that σ produces smaller inter-
mediate results, i.e. that it satisfies the reduction property of
Definition 6.2. In conclusion we have:

Corollary 8.4. σ is a reduction operation.

In summary, σ-reduction utilizes the special case where we
know that a certain type of values, that of blank nodes, will
never be able to join with other results. In other words, it
doesn’t require peeking ahead at other intermediate results or
any such prescient behavior. It does this in a way that preserves
answers at the root, as it should.

It is worth noting that, in contrast to τ-reduction (cf. Ex-
ample 7.2), σ-reduction yields an evaluation tree. That is, the
tree Ψσ, obtained by reducing evaluation tree Ψ by σ, satisfies
Ψσ(n1) ./ Ψσ(n2) = Ψσ(n). This is ultimately due to the dis-
tributivity of σ, which is established in the following lemma:

Lemma 8.5. Let Ψ be a tree. Then for any node Ωi ∈ Ψ of the
form Ωi := Ω j ./ Ωk ∈ Ψ, then

σΨ
i (Ω j ./ Ωk) = σΨ

j (Ω j) ./ σΨ
k (Ωk)

Proof. by Lemma 8.2, we have that σΨ
i (Ω j ./ Ωk) = (Ω j ./

Ωk)σ, σΨ
j (Ω j) = Ω

j
σ and σΨ

k (Ωk) = Ωk
σ. By the second case

of Definition 6.1, we have that (Ω j ./ Ωk)σ = σΨ
i (Ω j

σ ./ Ωk
σ),

hence σΨ
i (Ω j ./ Ωk) = σΨ

i (Ω j
σ ./ Ωk

σ). Since Ω
j
σ ./ Ωk

σ =

σΨ
j (Ω j) ./ σΨ

k (Ωk), then by equality, and functionality of σΨ
i ,

σΨ
i (Ω j ./ Ωk) = σΨ

i (σΨ
j (Ω j) ./ σΨ

k (Ωk)), hence it suffices to
show σΨ

i (σΨ
j (Ω j) ./ σΨ

k (Ωk)) = σΨ
j (Ω j) ./ σΨ

k (Ωk). We show
this by set inclusion. Since σΨ

i (σΨ
j (Ω j) ./ σΨ

k (Ωk)) ⊆ σΨ
j (Ω j) ./

σΨ
k (Ωk), it remains to showσΨ

i (σΨ
j (Ω j) ./ σΨ

k (Ωk)) ⊇ σΨ
j (Ω j) ./

σΨ
k (Ωk). Suppose that µ ∈ σΨ

j (Ω j) ./ σΨ
k (Ωk) for µ = µ j ∪ µk

such that µ j ∈ σ
Ψ
j (Ω j) and µk ∈ σ

Ψ
k (Ωk). Assume for contra-

diction that µ < σΨ
i (σΨ

j (Ω j) ./ σΨ
k (Ωk)). That is, by definition,

there is an ?x ∈ dom(µ j ∪ µk) ∩ J(Ψ, i) s.t. µ j ∪ µ j(?x) ∈ B.
We break the proof down into cases, based on the member-

ship of ?x in the domains of µ j and µk.

Case: ?x ∈ dom(µ j) ∩ dom(µk). Then, since µ j � µk, it fol-
lows that µ j(?x) = µk(?x) ∈ B. By Lemma 8.1, ran(Ω j) ∩
ran(Ωk)∩B = ∅, hence it follows that ran(µ j)∩ran(µk)∩B = ∅,
hence µ j(?x) = µk(?x) < B, a contradiction.

Case: ?x < dom(µ j) ∩ dom(µk). That is, ?x ∈ dom(µ j) or ?x ∈
dom(µk), but not in both. Since two are similar, then wlog. as-
sume ?x ∈ dom(µ j). Since J(Ψ, i) ⊆ J(Ψ, j) ∪ J(Ψ, k), then
?x ∈ dom(µ j) ∩ (J(Ψ, j) ∪ J(Ψ, k)). Now, since dom(Ω j) ∩
J(Ψ, k) \ J(Ψ, j) = ∅ as a consequence of Definition 7.1, then
?x ∈ dom(µ j) ∩ J(Ψ, j) and µ j(?x) ∈ B. But since µ j ∈ σ

Ψ
j (Ω j)

then µ j(?x) < B, a contradiction.

Distributivity may also be viewed as a leaf-sufficiency prin-
ciple, meaning that all intermediate results can be minimized
by just reducing the leaves. It is a property that the σ-operation
is the sole operation in this paper to enjoy. This difference be-
tween the operators has the consequence, among other things,
that a σ-reduced tree and a, say, τ-reduced one are not of the
same form. Therefore, if one wants to compose these opera-
tors, one has to take special steps to make sure that they type
check. We return to this topic in Section 10.

9. Information preserving subsets

There is another property that one may hope to exploit in
order to reduce the number of rows in an intermediate result
without compromising the logical content of the final answer,
namely the relative informativeness of solutions. For the pur-
poses of this informal discussion, let rows in an answer set
be denoted by tuples. Then it is intuitively clear that the row
( :s, :s) is more specific than ( :s, _:b). Therefore, an answer set
that contains only the former may plausibly be said to contain
just as much information (under set semantics) as an answer set
that contains both.

For illustration, consider the two answer sets in Fig. 20. It
seems intuitively clear that the top row in the table on the left
is more informative than the bottom one, and therefore that the
table on the right contains no less information than that on the
left. Conversely, since the table on the right is subsumed by
that on the left, the left also entails the right, so the two sets are
intuitively equivalent under set semantics. In other words, the
row containing a blank node can in this case be deleted. To be
sure, in more complex cases, cross-references between blank
nodes in different rows may need to be taken into account.

?x ?y
:s :t

?x ?y
:s :t
:s _:b

m
ore

inform
ative

equivalent

Figure 20: Intuitively equivalent sets.

It is the purpose of the present section to make these intu-
itive remarks formally precise. This requires that the concepts
of an answer set ‘preserving’ the information of another answer
set be defined and justified in a meaningful and plausible way.

The following roadmap to the present section might be help-
ful: First we define information preservation in terms of the
existence of a valuation function between answer sets, and use
this notion to coin a row-reduction operation. A valuation func-
tion instantiates blank nodes in answer sets in a way similar to
how nulls are treated in the theory of incomplete databases [4],
except that valuations are here generalized to allow mappings
from blank nodes to other blank nodes. In this respect valua-
tions are rather more like RDF homomorphisms.
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Next, we generalize the concept of RDF-entailment to that
of SPARQL-entailment. The latter is defined as a homomor-
phic functional relation that holds between graph patterns, and
induces a concept of SPARQL-equivalence as the two-way en-
tailment between such patterns. A concept of SPARQL equiv-
alence is needed because, unlike the reduction operators dis-
cussed heretofore, the operation of removing less informative
rows from intermediate results is obviously not a reduction op-
erator wrt. equality (ref. Definition 6.2), witnessed by Fig. 20.
We shall need a less stringent concept of equivalence therefore.

Finally, we show that the operation of removing less infor-
mative solutions from an intermediate result preserves the final
result of query processing up to SPARQL-equivalence. That
is, reducing intermediate answer sets by way of valuations will
preserve final results in a sense that conforms to the abstract
Definition 6.2 of a reduction operator.

Before bringing the section to a close, we also take the time
to compare our concept of result set equivalence with the con-
cept of completions from the theory of incomplete databases.
As it turns out, there is an instructive relationship between the
two under the open world semantics, so called in [4]. This re-
lationship reflects a duality between information preserving re-
ductions, on the one hand, and the addition of tuples on the
other hand, in this case redundant ones, that is permitted by the
open world semantics.

9.1. SPARQL-equivalence

Recall the following concepts from [19] (which derives ul-
timately from [31]).

Definition 9.1 (RDF homomorphism). An RDF homomorphism
h : G1 → G2 is a function from IBL to IBL such that h(u) =

u for every u ∈ IL and such that (u1, u2, u3) ∈ G1 implies
(h(u1), h(u2), h(u3)) ∈ G2. ◦

Definition 9.2 (RDF-entailment). An RDF graph G1 entails
another G2 iff there is an RDF homomorphism h from G2 to
G1. ◦

The problem with these definitions, for the purposes of the
present paper, is that since they hark back to RDF homomor-
phisms they only apply to pairs of answer sets Ω and patterns P
with the property that the variables that occur in P are all in the
domain of Ω. If this condition is not satisfied then µ(P), for any
µ ∈ Ω, is not an RDF graph and cannot therefore be the source
or the target for an RDF homomorphism.

This limitation is important because the projection opera-
tion that produces the final answer πW (Ωε) from the root Ωε of
a tree Ψ will not in general contain all the variables that occur
in the query pattern. That is, even though var(P) ⊆ dom(Ωε)
holds in general var(P′) ⊆ dom(πW (Ωε)) may not hold for any
subset P′ of P. It follows that πW (Ωε) and Ωε will not in general
be RDF-equivalent, and therefore that the operation of remov-
ing less informative rows will not be a reduction operation wrt.
RDF-equivalence in the sense of Definition 6.2.

We therefore propose the following generalization of RDF
homomorphisms to SPARQL homomorphisms:

Definition 9.3 (SPARQL homomorphism). A SPARQL homo-
morphism is a function from IBLV to IBLV that maps a BGP
P1 homomorphically to a BGP P2 under the condition that h(u) =

u for u ∈ ILV. ◦

In analogy to the relation between RDF-homomorphisms
and RDF-entailment Definition 9.3 induces a concept of SPARQL-
entailment:

Definition 9.4 (SPARQL entailment). Let P1, P2 be BGPs. Then
P1 ` P2 iff there is a SPARQL-homomorphism from P2 to
P1. ◦

Answer set-equivalence can now be defined as follows:

Definition 9.5 (Answer set entailment). Let Ωi and Ω j be an-
swer sets with the same domain and P a basic graph pattern.
We shall say that Ωi SPARQL-entails Ω j modulo P, written
Ωi `P Ω j, iff ⋃

µ∈Ωi

µ(P) `
⋃
µ′∈Ω j

µ′(P)

We let [Ω]a`P ⊆ A denote the equivalence class induced by
a`P. ◦

Taking stock so far, one might say that answer set equiv-
alence based on SPARQL-entailment—henceforth referred to
simply as answer set entailment—is what one gets if one blurs
the difference between a variable and a constant and considers
a BGP as itself a kind of RDF graph. Mapping queries onto
one another in this manner is a well-known strategy in database
theory [30].

9.2. Informativeness and information preservation
We start by defining information preserving valuations of

blank nodes.

Definition 9.6. A valuation is a function v : B → IBL. We
shall say that an answer set Ω j preserves the information in Ωi

iff there is a v such that v(Ωi) = Ω j. ◦

This concept is a blend of a valuation as found in database
literature (e.g. in [4]), and the concept of SPARQL homomor-
phisms. More on this shortly.

Information preserving valuations of nulls, the database equiv-
alent to blank nodes, is well studied (see [4, 5, 30]). We give a
quick recap of the central notions from [4, 5] to throw our own
concept into relief:

Incomplete databases have two kinds of values: constants
from an infinite set Const and nulls from an infinite set Null.
A relational schema is a set of relation names with associated
arities. A database instance D assigns to each k-ary relation R
from the schema a k-tuple over Const ∪ Null. Set of con-
stants and nulls that occur in D are denoted Const(D) and
Null(D) respectively. A database instance is complete if ev-
ery tuple has values from Const and incomplete otherwise. A
valuation is a function v : Null(D)→ Const that completes
an incomplete database by uniformly substituting constants for
nulls. The completion of D by v is denoted v(D). The semantic
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denotation of an incomplete database D is defined as the set of
its completions, which can be taken in an open world, sense and
a closed world sense:

Open world semantics

JDKOWA =de f

{
D′

∣∣∣∣∣∣ D′ is complete and
v(D) ⊆ D′ for some valuation v

}
Closed word semantics

JDKCWA =de f

{
D′

∣∣∣ D′ = v(D) for some valuation v
}

A database D’ is said to be more informative than D if D’ ∈
JDK∗ for ∗ ∈ {OWA,CWA}.

The difference between this database concept of a valuation
and that of Definition 9.6 is minor but of consequence: valua-
tions in the present sense are allowed to map blank nodes not
only to constants but also to literals and more importantly to
other blanks. Example 9.1 shows the behavior of valuations on
answer sets.

Example 9.1. Consider the query P = {(?x, :p, ?y)} and the
following answer set

Ω =

?x ?y
:s :t
:s _ :b1

:s _ :b2

_ :b2 :t

Let vi be the valuation that maps all blank nodes to :t. Then

vi(Ω) =

?x ?y
:s :t
:t :t

The result in this case, is that vi(Ω) preserves the information
in Ω in that vi(Ω) `P Ω. Note, however, that equivalence does
not hold since the edge ( :t, :p, :t) in (vi(Ω))(P) is not contained
in Ω(P), hence vi(Ω) 6aP Ω.

Now, if we let v j be the valuation that maps _ :b1 7→ :t and
identity for all other blank nodes. Then

v j(Ω) =

?x ?y
:s :t
:s _ :b2

_ :b2 :t

In this case, however, we do have equivalence in the form that
vi(Ω) a`P Ω

As shown in the abovementioned example, valuations act
more like SPARQL- or RDF homomorphisms, which will turn
out to be what will be required for preserving answer set equiv-
alence. This is not too surprising since by Definition 9.5 the
latter concept is a relation that holds between graph patterns.
The relation of being a reduct of an answer set modulo such a
valuation can then straightforwardly be defined as the former’s
being an equally informative subset of the latter. Lemma 9.1 ad-
dresses the first part of this programme, showing that valuations
in the present sense outputs SPARQL entailed answer sets.

Lemma 9.1. If v(Ωi) = Ω j then Ω j `P Ωi.

Proof. It suffices to show that there is a SPARQL homomor-
phism from Ωi(P) to Ω j(P) on the assumption that v(Ωi) = Ω j.
Let v+ = v∪{(u, u) | u ∈ IL} and suppose t′ ∈ Ωi(P). Then there
is a t ∈ P and a µ ∈ Ωi such that t′ = µ(t). Since v(Ωi) = Ω j

it follows that vµ ∈ Ω j, and, since v+ is the identity on every-
thing except possibly blank nodes, also v+µ ∈ Ω j. Therefore
v+µ(t) ∈ Ω j(P) so v+ is a SPARQL homomorphism.

It is worthwhile to note that the converse of Lemma 9.1 does
not hold, i.e. being-a-valuation-of and being-entailed is not the
same concept, viz. Example 9.2:

Example 9.2. Consider P = {(?x1, :p, ?y1), (?x2, :p, ?y2)} and
the following two answer sets

Ωi =
?x1 ?y1 ?x2 ?y2

:s :t :u :v

Ω j =
?x1 ?y1 ?x2 ?y2

:u :v :s :t

Then Ωi(P) ` Ω j(P) and Ωi(P) a Ω j(P), but there are no valu-
ations vi, v j that can make vi(Ωi) = Ω j resp. v j(Ω j) = Ωi, since
this would require vi to map :s 7→:u and :t 7→:v, and the reverse
for v j, breaking the condition that concrete terms only map to
identity.

Turning to the second part of the aforementioned programme,
Lemma 9.2 establishes that if we restrict the set of valuations to
those that yield subsets, we end up with equivalent answer sets
modulo an arbitrary P.

Lemma 9.2. If v(Ωi) = Ω j and Ω j ⊆ Ωi, then Ω j ∈ [Ωi]a`P for
any query pattern P.

Proof. Immediately since Ωi ⊆ Ω j implies Ω j `P Ωi, and from
Lemma 9.1, we have that v(Ω j) = Ωi implies Ωi `P Ω j.

We shall call valuations that satisfy the antecedent of Lemma
9.2 reducing valuations.

Now, although reducing valuations preserves the informa-
tion content, i.e. the semantics, of answer sets (and thus a for-
tiori of intermediate results in an evaluation tree one-by-one) it
is not entirely obvious that equivalence will be propagated by
joins up the tree. This is necessary if the reduction based on in-
formativeness is to satisfy result set equivalence as required by
Definition 6.2. Indeed, the just mentioned propagation property
will have to be established, for as Example 9.3 shows, answer
set-equivalence does not in the general case cater for joins:

Example 9.3. Consider the evaluation tree shown in Fig. 21,
where P is the union of the BGPs associated with the leaf nodes.
The two solutions in Ω1 are S PARQL-equivalent, modulo P,
and likewise for the two solutions in Ω2. Choosing arbitrarily
between equivalent solutions from the same answer set, say, µ1
in Ω1 and µ4 in Ω2, can result in answers being lost, as indi-
cated in the figure. That is, µ1 ∪ µ3 and µ2 ∪ µ4 are compatible,
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Ω1 = J(?x1, :p1, ?x2), (?x2, :p1, ?x1)K

Ω2 = J(?x1, :p2, ?x2), (?x2, :p2, ?x1)K

Ωε = Ω1 ./ Ω2 = ∅

Ω1

?x1 ?x2

µ1 :s :t
µ2 :t :s

Ω2

?x1 ?x2

µ3 :s :t
µ4 :t :s

Figure 21: Entailment is not a reduction operation

and hence would both be in Ωε for the unreduced tree. Yet µ1
and µ4 are clearly not compatible, since they bind different val-
ues to the live variables {?x, ?y}, and neither is µ2 and µ3. Thus,
from the example it is clear that entailment on its own is not a
reduction operation.

A significant consequence of this, in terms of federated eval-
uation, is that graph equivalence itself is not sufficient to cater
for joins in a way that propagates equivalence to the final result.

Note that there are in general many distinct reducing val-
uations for a particular answer set. Given the present paper’s
concern with size, it is natural to seek the most effective ones
among them, i.e. the valuations that yield the smallest reducts.
The next set of results show that it is possible to kill two birds
with one stone by selecting the reducing valuations that yield
lean subsets, since as it turns out these valuations do cater for
joins in the desired way.

The concept of leanness alluded to here is a straightforward
lifting of the corresponding notion from [32].

Definition 9.7. Ω is lean if there is no valuation v s.t. v(Ω) ⊂
Ω. ◦

A lean set cannot be further reduced without somehow com-
promising information. We will define the lean answer sets wrt.
an answer set Ω, denoted L (Ω), as the family of lean subsets
of Ω that preserves Ω by way of valuations. Formally:

Definition 9.8.

L (Ω) =de f {Ω′ ⊆ Ω : Ω′ is lean, and v(Ω) = Ω′

for some valuation v}

◦

Corollary 9.3. If Ω is an answer set, and P a query, then

L (Ω) ⊆ [Ω]a`P

We are now able to show that if answer sets do not share
blank nodes, as is the case of two intermediate nodes in an eval-
uation tree that are not along the same path (ref. the separation
assumption in Section 5) then lean answers caters for joins in
the right way, propagating equivalence upwards.

Lemma 9.4. Let vi(Ωi) ∈ L (Ωi), v j(Ω j) ∈ L (Ω j), and ran(Ωi)∩
ran(Ω j) ∩ B = ∅, then

L (vi(Ωi) ./ v j(Ω j)) ⊆ L (Ωi ./ Ω j)

Proof. We will show that there is a valuation v+ s.t.

1. vi(Ωi) ./ v j(Ω j) = v+(Ωi ./ Ω j)

2. v+(Ωi ./ Ω j) ⊆ Ωi ./ Ω j

3. L (v+(Ωi ./ Ω j)) ⊆ L (Ωi ./ Ω j)

whence substituting in (1) into (3) yields

L (vi(Ωi) ./ v j(Ω j)) ⊆ L (Ωi ./ Ω j)

Item (1) says that the combination of vi and v j is a valuation.
Item (2) says that this valuation is a reducing valuation. The
output of v+ may not be lean. However, any lean subset of the
output would also be a lean subset of the original join, which is
item (3).

Now, we first note that since ran(Ωi)∩ran(Ω j)∩B = ∅, then
vi
|ran(Ωi)∩B ∪ v j

|ran(Ω j)∩B is functional. Let v+ be any valuation s.t.

v+ ⊇ vi
|ran(Ωi)∩B ∪ v j

|ran(Ω j)∩B.

Part 1. Let µi ∈ Ωi and µ j ∈ Ω j and µi � µ j. Then

v+(µi ∪ µ j) = (v+(µi ∪ µ j))|dom(µi) ∪ (v+(µi ∪ µ j))|dom(µ j)

= (vi(µi ∪ µ j))|dom(µi) ∪ (v j(µi ∪ µ j))|dom(µ j)

= vi(µi) ∪ v j(µ j)

Part 2. As a consequence of Definition 9.8, vi(Ωi) ⊆ Ωi and
v j(Ω j) ⊆ Ω j, hence vi(Ωi) ./ v j(Ω j) ⊆ Ωi ./ Ω j. From Part
1 we have that vi(Ωi) ./ v j(Ω j) = v+(Ωi ./ Ω j), thus by the
substitution property of equality we have v+(Ωi ./ Ω j) ⊆ Ωi ./
Ω j.

Part 3. Assume Ωl ∈ L (v+(Ωi ./ Ω j)). Then, as a consequence
of Definition 9.8, there is a v s.t. v(v+(Ωi ./ Ω j)) = Ωl and
v(v+(Ωi ./ Ω j)) ⊆ v+(Ωi ./ Ω j). Then v ◦ v+ is a valuation s.t.
v ◦ v+(Ωi ./ Ω j) = Ωl. Since Ωl is lean, and v ◦ v+(Ωi ./ Ω j) ⊆
v+(Ωi ./ Ω j) ⊆ Ωi ./ Ω j as a consequence of Part 2, then by
Definition 9.8 we have that Ωl ∈ L (Ωi ./ Ω j).

We define a straightforward reduction operation based on
lean answers as follows:

Definition 9.9.
δΨ(Ω) ∈ L (Ω)

◦

That is, we pick arbitrarily from L (Ω). The following lemma
verifies that reducing an evaluation tree with δ yields an answer
set that is lean.
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Lemma 9.5. Let Ψ be an evaluation tree. Then for any Ωi ∈ Ψ

we have
Ωi
δ ∈ L (Ωi)

Proof. Proof proceeds by induction on the depth of Ψ.

Base case: d(Ψ) = 0. Then Ψ contains only one node Ωε , and
that node is a leaf. By the first case of Definition 6.1, and the
definition of δΨ, we have that Ωε

δ = δΨ(Ωε) ∈ L (Ωε).

Induction step: d(Ψ) > 0. Suppose that Ωi = Ω j ./ Ωk. We
need to show that

(
Ω j ./ Ωk

)
δ
∈ L (Ω j ./ Ωk). By the second

case of Definition 6.1, we have that
(
Ω j ./ Ωk

)
δ

= δΨ
i

(
Ω

j
δ ./ Ωk

δ

)
,

hence it suffices to show that

δΨ
i

(
Ω

j
δ ./ Ωk

δ

)
∈ L (Ω j ./ Ωk) (3)

Assume for induction hypothesis that Ω
j
δ ∈ L (Ω j) and Ωk

δ ∈

L (Ωk). By Lemma 9.4, we have that L (Ω j
δ ./ Ωk

δ) ⊆ L (Ω j ./
Ωk), since i � j and i � j thus ran(Ω j) ∩ ran(Ωk) ∩ B = ∅.
Finally, since δΨ

i

(
Ω

j
δ ./ Ωk

δ

)
∈ L (Ω j

δ ./ Ωk
δ) by the definition of

δ (Definition 9.9), it follows that δΨ
i

(
Ω

j
δ ./ Ωk

δ

)
∈ L (Ω j ./ Ωk).

For proving that δ is a reduction operation, however, we
must establish that answer set equivalence (wrt. SPARQL equiv-
alence) holds after the final extraction of projected variables—
i.e. we must prove result set equivalence. The following lemma
establishes something slightly stronger than required.; namely
that a) informativeness is preserved, and b) the reduced answer
is a subset of the unreduced.

Lemma 9.6. For evaluation tree Ψ and any W ∈ dom(Ωε), we
have that

1. πW (Ωε
δ) preserves information in πW (Ωε), and

2. πW (Ωε
δ) ⊆ πW (Ωε)

Proof. By Lemma 9.5, Ωε
δ ∈ L (Ωε), hence there is a valuation

v s.t. v(Ωε) = Ωε
δ, and Ωε

δ ⊆ Ωε .

Part 1. We will show that v is a valuation s.t. v(πW (Ωε)) =

πW (Ωε
δ). From the definition of πW , and the assumption that

v(Ωε) = Ωε
δ, it suffices to show that (v(Ωε))|W = v(Ωε

|W ).
(⇒) Assume µ′ ∈ (v(Ωε))|W , hence there is a µ ∈ v(Ωε) s.t.

µ ⊇ µ′ and a µ∗ ∈ Ωε s.t. v(µ∗) = µ. Immediately, we have
that µ∗

|W ∈ Ωε
|W . Now, since µ∗

|W ⊆ µ∗ and v is functional it
follows from v(µ∗) = µ ∈ v(Ωε) that v(µ∗

|W ) ∈ v(Ωε
|W ). Hence it

only remains to show that v(µ∗
|W ) = µ′. But this follows from

dom(v(µ∗
|W )) = dom(µ∗

|W ) = dom(µ|W ) and the functionality of
v.

(⇐) Assume µ′ ∈ v(Ωε
|W ). Hence there is a µ∗

|W ∈ Ωε
|W

s.t. v(µ∗
|W ) = µ′ and µ∗ ∈ Ωε . Then v(µ∗) ∈ v(Ωε), and since

v(µ∗
|W ) ⊆ v(µ∗), it follows that v(µ∗

|W ) = (v(µ∗))|W by equality of
domains. Now, since v(µ∗

|W ) = µ′ and v(µ∗
|W ) = (v(µ∗))|W , we

have that (v(µ∗))|W = µ′, and since v(µ∗) ∈ v(Ωε), it follows that
µ′ ∈ (v(Ωε))|W .

Part 2. Since Ωε
δ ⊆ Ωε , then it follows directly that (Ωε

δ)|W ⊆
(Ωε)|W hence πW (Ωε

δ) ⊆ πW (Ωε).

Now, that δ satisfies the shrinking property of Definition 6.2
follows directly from Definition 9.8. Hence in order to establish
that δ is a reduction operator, we must show that it yields result
equivalence.

Corollary 9.7. Let Ψ be a tree and P a query, then

πW (Ωε
δ) ∈ [πW (Ωε)]a`P

Proof. Directly from Lemmas 9.2 and 9.6.

Hence δ is a valid reduction operation under SPARQL equiv-
alence. As a side remark, we note that the resulting answer set
is not itself necessarily lean, as the project operation can pro-
duce new redundancies.

9.3. A characterization in terms of database completions

We shall return briefly to the topic of the relation between
the concept of result-set equivalence and the concept of database
completions [4, 5]. Recall that the former is a graph-theoretic
concept that relates two answer set by way of the respective in-
duced graphs. The second concept, on the other hand, is the
concept of a function providing one of several possible mean-
ings of an incomplete database by "plugging its holes" i.e. sub-
stituting concrete values for nulls. Although quite different on
the face of it, there is a gratifyingly simple relationship between
the two expressed in Theorem 9.8.

Theorem 9.8.

JπW (Ωε
δ)KOWA = JπW (Ωε)KOWA

Proof.

(⇒) If Ω′ ∈ JπW (Ωε
δ)KOWA then by the definition of open-

world semantics there is a valuation vr(πW (Ωε
δ)) ⊆ Ω′ where

both vr(πW (Ωε
δ)) and Ω′ are free from blank nodes. By Lemma

9.6, there is a valuation v(πW (Ωε)) = πW (Ωε
δ), hence vr ◦ v is a

valuation s.t. vr ◦ v(πW (Ωε)) ⊆ Ω′ and vr ◦ v(πW (Ωε)) is free
from blank nodes, thus Ω′ ∈ JπW (Ωε)KOWA.

(⇐) If Ω′ ∈ JπW (Ωε)KOWA then there is a valuation v(πW (Ωε)) ⊆
Ω′ where both v(πW (Ωε)) and Ω′ are free of blank nodes. Since
πW (Ωε

δ) ⊆ πW (Ωε) then it follows that v(πW (Ωε
δ)) ⊆ v(πW (Ωε))

thus also v(πW (Ωε
δ)) is free of blank nodes and v(πW (Ωε

δ)) ⊆ Ω′

hence Ω′ ∈ JπW (Ωε
δ)KOWA.

Explained in words, Theorem 9.8 says that the root of an evalu-
ation tree Ψ and the root of its δ-reduction Ψδ have the same
database completions under the open world semantics. The
theorem, one might say, sanctions the concept of SPARQL-
equivalence by showing that two equivalent result sets also have
the same completions in a relational sense. As such, it may be
taken as independent validation of the present approach.
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It is interesting that the presupposition of open world se-
mantics is necessary for this result to hold, for as Example 9.4
demonstrates it breaks under closed world semantics.

Example 9.4. Consider answer sets πW (Ωε) and Ω′ s.t.

πW (Ωε) =

?x ?y
:s _ :b1

:s _ :b2

Ω′ =

?x ?y
:s :t
:s :u

and let δ choose such that

πW (Ωε
δ) =

?x ?y
:s _ :b1

Then Ω′ ∈ JπW (Ωε)KCWA, but Ω′ < JπW (Ωε
δ)KCWA since there

exists no valuation v that can make v(πW (Ωε
δ)) = Ω′. That is,

any such v would have to map _ :b1 to both :t and :u, hence not
a function.

As mentioned at the start of the present section, the essential
open world nature of Theorem 9.8 reflects a duality between re-
spectively reductions, which by definition remove, and comple-
tions, which under the open world semantics are allowed to add
tuples. Stated differently, since a δ-reduct Ωε

δ ∈ Ψδ is SPARQL-
equivalent to Ωε ∈ Ψ the former, by the theorem 9.8, generates
the same set of completions as the latter under the open world
semantics. This in turn just goes to show that the reduced result-
set is a smaller version of the original set not only in terms of
SPARQL equivalence but also in terms of informativeness as
that concept is defined in relational database theory.

10. Compositions and size

In Section 6 we remarked that a reduced tree Ψo for some
operation o and an evaluation tree Ψ, may not itself be an eval-
uation tree. Take the operation τ: Ψτ need not be an evaluation
tree because it is not a distributive operation. This was shown
in Example 7.2. This means that an interior node in Ψτ is not in
the general case equal to the join of its left and right subtrees,
but rather to the truncation of that join.

One consequence of this is that compositions of reduction
operators, do not type check. As the definitions stand, one can-
not pipe the output of one reduction into the input of another
because all operators expect evaluation trees as inputs. To make
reduction operators composable, the key definitions need to be
pushed one step up the ladder of abstraction.

For that purpose, we shall in this section talk in abstract
terms about binary operator trees, or equivalently about binary
⊗-trees where ⊗may but need not be ./. The point of this is that
although reduction operators may not output evaluation trees,
they do output binary operator trees in the more abstract sense.
The operation σ outputs an evaluation tree, τ outputs a binary
operator tree where ⊗ = τ ./—that is, a tree under the binary
operator formed from the composition of join and truncation—
and δ outputs a binary operator tree where ⊗ = δ./.

In general, we make no assumptions about ⊗ except that it
satisfies the shrinking property from Section 6.2. The concept

of the o-reduction of a binary ⊗-tree is an accordingly general-
ized version of Definition 6.1:

Definition 10.1 (o-reduced ⊗-tree). Let o be an operation of
type o : T × A∗ ×A −→ A . The reduct Ψo of a binary ⊗-tree
Ψ, is a binary o⊗-tree derived from Ψ in the following manner:

Ωi
o =d f


oΨ

i (Ωi) if Ωi is a leaf

oΨ
i (Ω j

o ⊗Ωk
o) if Ωi = Ω j ⊗Ωk

◦

In complete analogy to Definition 6.2, we shall then say
that o is a composable reduction operator iff it satisfies result
equivalence wrt. binary operator trees in general. We have

Theorem 10.1. The operators σ, δ and τ are all composable
reduction operations wrt. SPARQL equivalence, and so is any
composition of them.

Sketch of proof. Composable reduction operators have the same
input and return types by design. It follows that if each of σ, δ
and τ can be shown to be a composable reduction operation,
then all compositions of them are (composable) reduction op-
erators too. Hence it suffices to show the former. The proof is
a straightforward, but rather tedious rerun, of the correspond-
ing proofs for the special case of ./-trees that we have already
given. As an illustration we show how to lift Lemma 7.1 and
Lemma 7.2 to binary operation trees.

For stability (Lemma 7.1), let Ψ be a ⊗-tree and Ωi = Ω j ⊗

Ωk ∈ Ψ. We need to show that

πVi (πV j (Ω
j) ⊗ πVk (Ω

k)) = πVi (Ω
j ⊗Ωk)

Let µ ∈ πVi (πV j (Ω
j) ⊗ πVk (Ω

k)). Since ⊗ satisfies shrink-
ing we have πVi (πV j (Ω

j) ⊗ πVk (Ω
k)) ⊆ πVi (πV j (Ω

j) ./ πVk (Ω
k))

whence µ = πVi (πV j (µ j) ∪ πVk (µk)) for some µ j and µk. The rest
of the verification is exactly like that for Lemma 7.1.

For Lemma 7.2 it suffices to check that the induction step
goes through: suppose that Ωi = Ω j ⊗Ωk, and assume as induc-
tion hypothesis that Ω

j
τ = πV j (Ω

j) and Ωk
τ = πVk (Ω

k). We need
to show that Ωi

τ = πVi (Ω
j ⊗Ωk). We have

Ωi
τ = τΨ

i (Ω j
τ ⊗Ωk

τ) df. Ωτ

= τΨ
i (πV j (Ω

j) ⊗ πVk (Ω
k)) by ind. hyp.

= πVi (πV j (Ω
j) ⊗ πVk (Ω

k)) by def. of τ

= πVi (Ω
j ⊗Ωk) by stability

The importance of Theorem 10.1 is that it ensures that we
can compose and reduction operators freely and apply them re-
peatedly without worrying that the overall semantics of the fed-
erated evaluation process will be skewed.

Nevertheless, different compositions do not in general yield
identical results, nor do they yield equally small ones. Consider
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the graph in Fig. 22 . Paths in the graph represent different com-
positions of reduction operators, and the nodes are the results.
J stands for live join variables, Π for project variables, and I for
idle variables. We denote the answer set whose only incoming
edge is a loop by Ω for easy reference. We think of this as an
unreduced answer set in some evaluation tree. We make some
observation regarding the order in which reduction operators
are applied.

Note first that all of the end results—i.e. all nodes with out-
degree 0—are SPARQL equivalent modulo the graph pattern P.
Nevertheless, they are all different, and only two of them have
the same size. Next, going into specifics we note that the δ op-
eration tends to have a lower reduction rate when it is applied
early rather than late. This is because the concept of informa-
tiveness is a semantic one, more precisely because the concept
of a valuation is defined in such a way that it respects seman-
tic relationships between rows in the answer set. E.g. in the
set Ω all rows are interrelated by blank nodes in such a way
that no row can be reduced without altering the semantics of
Ω. If any row is removed then a cross-reference between blank
nodes disappears and the connection it expresses is no longer
implicit in the answer set. In contrast we may think of σ and
τ as syntactic operators that remove rows and columns respec-
tively based purely on the form of the given tree (τ) and the
position of blank nodes in intermediate results (σ). Not being
sensitive to semantics, these operators will sometimes sever the
links between rows by removing an occurrence of a blank node,
thus making the resulting set less constrained. It makes sense
therefore to expect smaller intermediate results if the syntactic
operators are applied before δ since delta preserves such con-
straints. Fig. 22 confirms this, we have

δστ(Ω) < τδσ(Ω) ≤ τδσ(Ω) < τσδ(Ω)

The composition that produces the least intermediate result is
that which applies both of the syntactic operators first, and δ
last. We conjecture that this holds in general:

Theorem 10.2 (Row minimality). Let θ be any reduction oper-
ator and Ψ an evaluation tree. Then if for any node Ωk ∈ Ψ it
holds that dom(Ωk

θ) ⊂ dom(Ωk
δστ) for some k ∈ dom(Ψ), then θ

does not satisfy SPARQL result equivalence.

Also worth noting is the fact that the operation σδτ removes
strictly more rows than the combination σδ, despite the fact that
τ is not a row operator. This can be verified by following the
corresponding paths in Fig. 22. This tells us that there is a
genuine synergy between row and column operators. The ex-
planation is not too difficult to spot: when truncation removes
idle columns, it may happen to remove RDF terms and thereby
to generalize rows. As a consequence, some rows may col-
lapse under the relation of informativeness leaving a kernel with
fewer rows.

11. Conclusion

We have defined an abstract notion of a reduction operation
by stipulating that it should a) behave in a way that allows re-
ductions to be recursively applied to the nodes in an evaluation

tree, b) avoid increasing the size of an answer set, and c) yield
final results that are equivalent to that produced by the original
query wrt. some suitable equivalence relation. The point of the
abstract definition is to allow vertical and horizontal operations
to be studied in combination.

The equivalence relation must of course be meaningful to be
of interest. For the general case we have proposed one based on
entailment between query patterns that we have called S PARQL-
equivalence. This concept is in turn based on a concept of
graph homomorphisms that generalizes RDF-homomorphisms
by permitting uninstantiated variables in a graph pattern.

We have further formalized row- and column-reducing op-
erations and proved that they conform to the abstract defini-
tion. These operations are all intended for zero-knowledge fed-
eration, meaning that they express heuristic rules that can be
applied without looking at anything else than the shape of an
evaluation tree and the distribution of variables within it. In
particular, these reduction operators are not sensitive to the dis-
tribution of data in a given tree.

Finally, we have studied the composition of these operators
and determined that different orderings gives different effect. It
seems that in general syntactic operators based on the position
of a variable in a tree must be applied before semantic ones
that factor in logical content such as cross-references between
rows. The issue is left open as at the time of writing we have no
general minimality theorem to offer.

Due to their zero-knowledge nature, the reduction opera-
tions developed in this paper share the commonality that redun-
dancies can be computed without scanning solutions upwards
or sideways in the evaluation tree, and without any other form
of coordination between sources. These operators ought to be
useful for query federation in dynamic network topologies, and
useful for more traditional distributed, share-nothing architec-
tures as a means of reducing coordination, communication and
memory consumption.
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P = {(?x, :p, ?y), (?x, :p, ?z)}, Ω = JPK

Ω =

J Π I
?x ?y ?z
:u :s _:b1
:u _:b2 _:b3

_:b2 :s :t
:u _:b1 :t

J Π I
?x ?y ?z
:u :s _:b1
:u _:b2 _:b3
:u _:b1 :t

J Π

?x ?y
:u :s
:u _:b2
:u _:b1

J Π

?x ?y
:u :s
:u _:b2

_:b2 _:s
:u _:b1

J Π

?x ?y
:u :s
:u _:b2

_:b2 _:s

J Π

?x ?y
:u :s
:u _:b2

J Π

?x ?y
:u :s
:u _:b2
:u _:b1

J Π

?x ?y
:u :s

J Π I
?x ?y ?z
:u :s _:b1
:u _:b2 _:b3
:u _:b1 :t

J Π I
?x ?y ?z
:u :s _:b1
:u _:b1 :t

J Π

?x ?y
:u :s
:u _:b1

δ

σ τ

τ

δ σ

σ

δ

σ

δ τ

Figure 22: Compositions of δ, σ and τ
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